Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T17:40:44.174Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  07 September 2010

Harold A. Mooney
Affiliation:
Stanford University, California
Get access

Summary

Most ecosystems of the tropical and subtropical latitudes are seasonally stressed by drought (Schimper, 1898; Köppen, 1931; Murphy & Lugo, 1986). Research on population and ecosystems dynamics, and conservation efforts, however, rarely address these ecosystems, but rather concentrate on what is usually understood as tropical wet forest or rain forest. There has been enormous scientific and public attention directed toward documenting the effects of destruction of wet forests on soil fertility, biotic diversity, and global biogeochemistry. These concerns are certainly justified as the rates of forest and species loss accelerate. In contrast, relatively little attention has been given to forests subject to prolonged dry seasons (Ridpath & Corbett, 1985), and to their changing status. Degradation and conversion of ‘dry forest’ is far more advanced than that of wet forest: only a small fraction remains intact (Murphy & Lugo, Chapter 2; Sampaio, Chapter 3; Menaut, Lepage & Abbadie, Chapter 4; Rundel & Boonpragob, Chapter 5; Gentry, Chapter 7), and the area explicitly conserved is hardly perceptible. This is unfortunate because the forests with prolonged annual drought occupy more area than wet forests, have been of greater use to humans, and are still poorly known over most of their distribution.

The extent of forest in the drier tropics, and even its character, are difficult subjects for debate and research. Particularly in Africa, India and Asia, the relations between savannas, woodlands and dry forests (of various leaf habits) are notoriously complex (Furley, Proctor & Ratter, 1992). Savannas and their degradation are certainly priority subjects of tropical and global ecology, but as with wet forests, they are well studied compared with dry forests.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×