Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T09:05:29.268Z Has data issue: false hasContentIssue false

The differentiation of parasitic nematodes using random amplified polymorphic DNA

Published online by Cambridge University Press:  05 June 2009

M.R. Chacón
Affiliation:
Department of Biochemistry, Wellcome Centre for Parasitic Infections, Imperial College of Science, Technology and Medicine, London, SW7 2AY, UK
E. Rodriguez
Affiliation:
Instituto de Salud Carlos III, Centro Nacional de Microbiología, Departamento de Parasitología, 28220 Majadahonda, Madrid, Spain
R.M.E. Parkhouse
Affiliation:
Institute for Animal Health, Division of Immunology, Pirbright Laboratory Woking, GU24 0NF, UK
P.R. Burrows
Affiliation:
Rothamsted Experimental Station, Entomology and Nematology Department, Harpenden, Herts, AL5 2JQ, UK
T. Garate
Affiliation:
Instituto de Salud Carlos III, Centro Nacional de Microbiología, Departamento de Parasitología, 28220 Majadahonda, Madrid, Spain

Abstract

DNA from species and races of plant parasitic nematodes (Meloidogyne, Globodera and Heterodera) and a human parasitic nematode (Trichinella) were subjected to polymerase chain reaction amplification using one arbitrary primer (M-10). This technique results in relatively simple DNA profiles that include polymorphic markers known as random amplified polymorphic DNA (RAPDs). The RAPD profiles of the plant nematode species of Meloidogyne made possible the identification of M. incognita and M. hapla, but no differences were found between the patterns of M. javanica, M. arenaria and M. graminicola. Moreover, the four races of M. incognita were indistinguishable by this primer. In contrast, when races of the plant nematode Globodera rostochiensis (Ro1 and Ro2/3) were studied under the same RAPDs conditions, a race specific profile allows these two most devastating races to be differentiated. When DNAs of eight Trichinella isolates were subjected to RAPD studies, four different patterns were identified, corresponding to the four Trichinella clusters previously defined by isozyme polymorphism.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, D.C. (1989) Molecular approaches to DNA diagnosis. Parasitology 99, S125–S146.Google Scholar
Boev, S.N., Britov, V.A.R. & Orlov, I.V. (1979) Species composition of Trichinella. Wiadomoscy Parasitologiczne 25, 495503.Google Scholar
Burrows, P.R. (1990) The use of DNA to identify plant parasitic nematodes. Nematological Abstracts 59, 18.Google Scholar
Cenis, J.L. (1993) Identification of four major Meloidogyne spp. by random amplified polymorphic DNA (RAPD-PCR). Phytopathology 83, 7680.Google Scholar
Chacón, M.R., Parkhouse, R.M.E., Robinson, M.P., Burrows, P.R. & Garate, T. (1991) A species-specific oligonucleotide DNA probe for the identification of Meloidogyne incognita. Parasitology 103, 315319.Google Scholar
Chambers, A.E., Almond, N.M., Knight, M., Simpson, A.J.G. & Parkhouse, R.M.E. (1986) Repetitive DNA as a tool for the identification and comparison of nematode variants: application of Trichinella isolates. Molecular and Biochemical Parasitology 21, 113120.Google Scholar
Currant, J., Baillie, D.L. & Webster, J.M. (1985) Use of genomic DNA restriction fragment length differences to identify nematode species. Parasitology 90, 137144.Google Scholar
Currant, J., McClure, M.A. & Webster, J.M. (1986) Genotypic differentiation of Meloidogyne populations by detection of restriction fragment length differences in total DNA. Journal of Nematology 18, 8386.Google Scholar
Dias-Neto, E., Pereira de Souza, C., Rollinson, D., Katz, N., Pena, S.D.J. & Simpson, A.J.G. (1993) The random amplification of polymorphic DNA allows the identification of strains and species of Schistosoma. Molecular and Biochemical Parasitology 57, 8388.Google Scholar
Esbenshade, P.R. & Triantaphyllou, A.C. (1990) Isozyme phenotypes for the identification of Meloidogyne species. Journal of Nematology 22, 1015.Google Scholar
Fleming, C.C. & Marks, R.J. (1983) The identification of the potato cyst nematodes Globodera rostochiensis and G. pallida by isoelectric focusing of proteins on polyacrylamide gels. Annals of Applied Biology 103, 277281.Google Scholar
Flockhart, H.A., Harrison, S.E., Dobinson, A.R. & James, E.J. (1982) Enzyme polymorphism in Trichinella. Transactions of the Royal Society of Tropical Medicine and Hygiene 76, 541545.Google Scholar
Fox, P.C. & Atkinson, H.J. (1984) Glucose phosphate isomerase polymorphism in field populations of the potato cyst nematodes Globodera rostochiensis and G. pallida. Annals of Applied Biology 104, 503509.Google Scholar
Garate, T., Albarran, E., Bolas-Fernandez, F., Martinez-Fernandez, A.R. & Parkhouse, R.M.E. (1991) DNA polymorphism within Spanish Trichinella isolates. Parasitology Research 77, 602605.Google Scholar
Hussey, R.S. (1979) Biochemical systematics of nematodes. Helminthological Abstracts, Series B. Plant Nematology 48, 183188.Google Scholar
Mark, J.W. (1987) Epidemiology of lymphatic filariasis. in Filariasis. Ciba Foundation Symposium, no. 127. Chichester, John Wiley & Sons.Google Scholar
Mullis, K.B. & Faloona, F.A. (1987) Specific synthesis of DNA ‘in vitro’ via polymerase-catalysed chain reaction. Methods in Enzymology 155, 335350.Google Scholar
Philipp, M., Parkhouse, R.M.W. & Ogilvie, B.M. (1980) Changing proteins on the surface of a parasitic nematode. Nature 287, 538540.Google Scholar
Powers, T.O. & Harris, T.S. (1993) A polymerase chain reaction method for identification of five major Meloidogyne species. Journal of Nematology 25, 16.Google Scholar
Powers, T.O. & Sandall, L.J. (1988) Estimation of genetic divergence in Meloidogyne mitochondrial DNA. Journal of Nematology 20, 505511.Google Scholar
Powers, T.O., Platzer, E.G. & Hyman, B.C. (1986) Species-specific restriction site polymorphism in root-knot nematode mitochondrial DNA. Journal of Nematology 18, 288296.Google Scholar
Pozio, E., La Rosa, G., Rossi, P. & Murrell, K.D. (1989) New taxonomic contribution to the genus Trichinella (Owen, 1835). I. Biochemical identification of seven clusters by geneenzyme systems. pp. 405411in Trichinellosis. Proceedings VII ICT Tanner, C.E., Martinez, Fernandez A.R. & Bolas, Fernandez F. (Eds), Alicante, Spain.Google Scholar
Robinson, M.P., Delgado, J. & Parkhouse, R.M.E. (1989) Characterisation of stage-specific cuticular proteins of Meloidogyne incognita by radio-iodination. Physiological and Molecular Plant Pathology 35. 135140.Google Scholar
Sambrook, J., Frisch, E.F. & Maniatis, T. (1989) Molecular cloning. A laboratory manual. 2nd Edition. New York, Cold Spring Harbor.Google Scholar
Simpson, A.J., Sher, A. & McCutchan, T.F. (1982) The genome of Schistosoma mansoni: isolation its size, bases and repetitive sequences. Molecular and Biochemical Parasitology 6, 125137.Google Scholar
Southern, E.M. (1975) Detection of specific sequences among DNA fragment separated by gel electrophoresis. Journal of Molecular Biology 98, 503517.Google Scholar
Steindel, M., Dias-Neto, E., de Menezes, C.L.P., Romanha, A.J. & Simpson, A.J.G. (1993) Random amplified polymorphic DNA analysis of Trypsanosoma cruzi strains. Molecular and Biochemical Parasitology 60, 7180.Google Scholar
Welsh, J. & McClelland, M. (1991) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research 18, 72137218.Google Scholar
Williams, J.G.K., Kubelik, A.R., Livak, K., Rafalsky, J.A. & Tingey, S.V. (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 65316535.Google Scholar