Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T16:30:42.241Z Has data issue: false hasContentIssue false

Haemagglutination-inhibition antibodies against influenza A and influenza B in maternal and neonatal sera

Published online by Cambridge University Press:  15 May 2009

N. Masurel
Affiliation:
Department of Virology and WHO Influenza Centre, Erasmus University Rotterdam, Rotterdam, The Netherlands
J. I. de Bruijne
Affiliation:
Department of Neonatology, University of Amsterdam, Amsterdam, The Netherlands
H. A. Beuningh
Affiliation:
Department of Obstetrics and Gynaecology, University of Amsterdam, Amsterdam, The Netherlands
H. J. A. Schouten
Affiliation:
Institute for Biostatistics, Erasmus University Rotterdam, Rotterdam, The Netherlands
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Haemagglutination inhibition (HI) antibodies against the influenza viruses A/Hong Kong/8/68 (H3N2) and B/Nederland/77/66 were determined in 420 paired sera from mothers and newborns (umbilical cord sera), sampled in 1970–1.

A higher concentration of antibodies against influenza A virus was found more frequently in neonatal than in maternal sera. By contrast, low titres against influenza B virus were more frequently observed in neonatal than in maternal sera. Maternal age, duration of pregnancy, and birth-weight did not affect the results of the tests.

It is suggested that the titre of the newborn against an epidemic influenza virus can be predicted from that of the mother. Furthermore, the maternal titre may be an indication of the susceptibility of the newborn infant to influenza infections.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

References

REFERENCES

Brouwer, R., de Groot, I. G. M. & Verheij, F. B. M. (1974). Comparison of maternal and cord serum titres for measles and for rubella antibodies. Archiv für die gesamte Virus-forschung 44, 237.CrossRefGoogle ScholarPubMed
Cloonan, M. J., Hawkes, R. A. & Stevens, L. H. (1971). Postnatal decline of maternally acquired viral antibodies of different specificities. Journal of Hygiene 69, 435.CrossRefGoogle ScholarPubMed
Hitzig, W. H. (1961). Das Bluteiweiβbild beim gesunden Säugling. Helvetica Paediatrica Acta 16, 46.Google Scholar
Hobson, D., Curry, R. L., Beare, A. S. & Ward-Gardner, A. (1972). The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses. Journal of Hygiene 70, 767.Google ScholarPubMed
Kohler, P. F. & Farr, R. S. (1966). Elevation of cord over maternal IgG immunoglobulin: evidence for an active placental IgG transport. Nature, London 210, 1070.CrossRefGoogle ScholarPubMed
Lennette, E. H. & Schmidt, N. J. (1969). Diagnostic Procedures for Viral and Rickettsial Infections. New York: American Public Health Association.Google Scholar
Mäntyjärvi, R., Hirvonen, T. & Toivanen, P. (1970). Maternal antibodies in human neonatal sera. Immunology 18, 449.Google ScholarPubMed
Masurel, N. (1962). Studies on the content of haemagglutination inhibiting antibody for swine influenza virus A in sera from people living in the Netherlands in 1957–1958. Thesis, University of Leiden.Google Scholar
Michaux, J. L., Heremans, J. F. & Hitzig, W. H. (1966). Immunoglobulin levels in cord-blood serum of Negroes and Caucasians. Tropical and Geographical Medicine 18, 10.Google ScholarPubMed
Morell, A., Skvaril, F., van Loghem, E. & Kleemola, M. (1971). Human IgG subclasses in maternal and fetal serum. Vox Sanguinis 21, 481.CrossRefGoogle ScholarPubMed
Papadatos, C., Alexiou, D., Papaevangelou, G., Petropoulos, H. & Mendris, J. (1974). Serum levels of immune globulins in postmaturity. Archives of Disease in Childhood 49, 222.CrossRefGoogle ScholarPubMed
Reed, L. J. & Muench, H. (1938). A simple method of estimating fifty per cent endpoints. American Journal of Hygiene 27, 493.Google Scholar
Siegel, S. (1956). Nonparametric Statistics for the Behavioral Sciences, p. 312, New York: McGraw-Hill.Google Scholar
Toivanen, P., Mäntyjärvi, R. & Hirvonen, T. (1968). Maternal antibodies in human foetal sera at different stages of gestation. Immunology 15, 395.Google ScholarPubMed
Van der Veen, J. & Mulder, J. (1950). Studies on the Antigenic Composition of Human Influenza Virus A Strains with the Aid of the Haemagglutination Inhibition Technique. Leiden: Stenfert Kroese.Google Scholar
Virella, G., Silveira, Nunes M. A. & Tamagnini, G. (1972). Placental transfer of human IgG subclasses. Clinical and Experimental Immunology 10, 475.Google ScholarPubMed
Wesselius-de Casparis, A., Masurel, N. & Kerrebijn, K. F. (1972). Field trial with human and equine influenza vaccines in children: protection and antibody titres. Bulletin of the World Health Organization 46, 151.Google ScholarPubMed