Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-17T16:22:44.843Z Has data issue: false hasContentIssue false

Piezoelectric technology in otolaryngology, and head and neck surgery: a review

Published online by Cambridge University Press:  17 April 2017

C Meller*
Affiliation:
Department of Otolaryngology Head and Neck Surgery, Prince of Wales Hospital and Sydney Hospital, Sydney, Australia
T E Havas
Affiliation:
Department of Otolaryngology Head and Neck Surgery, Prince of Wales Hospital and Sydney Hospital, Sydney, Australia Division of Surgery, University of New South Wales, Sydney, Australia
*
Address for correspondence: Dr Catherine Meller, PO Box 388, Willoughby, NSW 2068, Australia Fax: +61 (02) 9369 4463 E-mail: cath_meller@yahoo.com.au

Abstract

Background:

Piezoelectric technology has existed for many years as a surgical tool for precise removal of soft tissue and bone. The existing literature regarding its use specifically for otolaryngology, and head and neck surgery was reviewed.

Methods:

The databases Medline, the Cochrane Central Register of Controlled Trials, PubMed, Embase and Cambridge Scientific Abstracts were searched. Studies were selected and reviewed based on relevance.

Results:

Sixty studies were identified and examined for evidence of benefits and disadvantages of piezoelectric surgery and its application in otolaryngology. The technique was compared with traditional surgical methods, in terms of intra-operative bleeding, histology, learning curve, operative time and post-operative pain.

Conclusion:

Piezoelectric technology has been successfully employed, particularly in otology and skull base surgery, where its specific advantages versus traditional drills include a lack of ‘blunting’ and tissue selectivity. Technical advantages include ease of use, a short learning curve and improved visibility. Its higher cost warrants consideration given that clinically significant improvements in operative time and morbidity have not yet been proven. Further studies may define the evolving role of piezoelectric surgery in otolaryngology, and head and neck surgery.

Type
Review Articles
Copyright
Copyright © JLO (1984) Limited 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bydon, M, Xu, R, Papdemetriou, K, Sciubba, DM, Wolinsky, JP, Witham, TF et al. Safety of spinal decompression using an ultrasonic bone curette compared with a high-speed drill: outcomes in 337 patients. J Neurosurg Spine 2013;18:627–33CrossRefGoogle ScholarPubMed
2 Nakase, H, Matsuda, R, Shin, Y, Park, YS, Sakaki, T. The use of ultrasonic bone curettes in spinal surgery. Acta Neurochir (Wien) 2006;89:84–6Google Scholar
3 Kshettry, VR, Jiang, X, Chotai, S, Ammirati, M. Optic nerve surface temperature during intradural anterior clinoidectomy: a comparison between high-speed diamond burr and ultrasonic bone curette. Neurosurg Rev 2014;37:453–9Google Scholar
4 Nordera, P, Spanio di Spilimbergo, S, Stenico, A, Fornezza, U, Volpin, L, Padula, E. The cutting edge technique for safe osteotomies in craniofacial surgery: the piezosurgery bone scalpel. Plast Reconstr Surg 2007;120:1989–95Google Scholar
5 Gleizal, A, Bera, JC, Lavandier, B, Beziat, JL. Piezoelectric osteotomy: a new technique for bone surgery – advantages in craniofacial surgery. Childs Nerv Syst 2007;23:509–13CrossRefGoogle ScholarPubMed
6 Gonzalez-Lagunas, J, Mareque, J. Calvarial bone harvesting with piezoelectric device. J Craniofac Surg 2007;18:1395–6CrossRefGoogle ScholarPubMed
7 Antisdel, JL, Kadze, MS, Sindwani, R. Application of ultrasonic aspirators to endoscopic dacryocystorhinostomy. Otolaryngol Head Neck Surg 2008;139:586–8CrossRefGoogle ScholarPubMed
8 Mostovych, NK, Rabinowitz, MR, Bilyk, JR, Pritbitkin, EA. Endoscopic ultrasonic dacryocystorhinostomy for recurrent dacryocystitis following rhinoplasty. Aesth Surg J 2014;34:520–5CrossRefGoogle ScholarPubMed
9 Hoigne, DJ, Stubinger, S, Von Kaenel, O, Shamdasani, S, Hasenboehler, P. Piezoelectric osteotomy in hand surgery: first experiences with a new technique. BMC Musculoskelet Disord 2006;7:36 Google Scholar
10 Robiony, M, Toro, C, Costa, F, Sembronio, S, Polini, F, Politi, M. Piezosurgery: a new method for osteotomies in rhinoplasty. J Craniofac Surg 2007;18:1098–100CrossRefGoogle ScholarPubMed
11 Cochran, CS, Roostaenian, J. Use of the ultrasonic bone aspirator for lateral osteotomies in rhinoplasty. Plast Reconstr Surg 2013;132:1430–3Google Scholar
12 Robiony, M, Polini, F, Costa, F, Torro, C, Politi, M. Ultrasound piezoelectric vibrations to perform osteotomies in rhinoplasty. J Oral Maxillofac Surg 2007;65:1035–8CrossRefGoogle ScholarPubMed
13 Pritbitkin, EA, Lavasani, LS, Shindle, C, Greywoode, JD. Sonic rhinoplasty: sculpting the nasal dorsum with the ultrasonic bone aspirator. Laryngoscope 2010;120:1504–7CrossRefGoogle Scholar
14 Salami, A, Dellepiane, M, Proto, E, Mora, R. Piezosurgery in otologic surgery: four years of experience. Otolaryngol Head Neck Surg 2009;144:412–18Google Scholar
15 Salami, A, Mora, R, Dellepiane, M, Crippa, B, Santomauro, V, Guastini, L. Piezosurgery versus microdrill in intact canal wall mastoidectomy. Eur Arch Otorhinolaryngol 2010;267:1705–11CrossRefGoogle ScholarPubMed
16 Vercellotti, T, Dellepiane, M, Mora, R, Salami, A. Piezoelectric bone surgery in otosclerosis. Acta Otolaryngol 2007;127:932–7Google Scholar
17 Salami, A, Mora, R, Dellepiane, M. Piezosurgery in the exeresis of glomus tympanicum tumours. Eur Arch Otorhinolaryngol 2008;265:1035–8Google Scholar
18 Salami, A, Mora, R, Dellepiane, M, Guastini, L. Piezosurgery for removal of symptomatic ear osteoma. Eur Arch Otorhinolaryngol 2010;267:1527–30Google Scholar
19 Salami, A, Dellepiane, M, Mora, F, Crippa, B, Mora, R. Piezosurgery in the cochleostomy through multiple middle ear approaches. Int J Pediatr Otorhinolaryngol 2008;72:653–7CrossRefGoogle ScholarPubMed
20 Grauvogel, J, Scheiwe, C, Kaminsky, J. Use of piezosurgery for internal auditory canal drilling in acoustic neuroma surgery. Acta Neurochir 2011;153:1941–7CrossRefGoogle ScholarPubMed
21 Salami, A, Mora, R, Dellepiane, M, Crippa, B, Guastini, L. Results of revision mastoidectomy with piezosurgery. Acta Otolaryngol 2010;130:1119–24Google Scholar
22 Dellepiane, M, Mora, R, Salzano, F, Salami, A. Clinical evaluation of piezoelectric ear surgery. Ear Nose Throat J 2008;87:212–16Google Scholar
23 Crippa, B, Salzano, F, Mora, R, Dellepiane, M, Salami, A, Guastini, L. Comparison of postoperative pain: piezoelectric device vs microdrill. Eur Arch Otorhinolaryngol 2011;268:1279–82Google Scholar
24 Sami, R, Krishnamoorthy, K, Pensak, M. Use of a novel ultrasonic surgical system for decompression of the facial nerve. Laryngoscope 2007;117:872–5CrossRefGoogle Scholar
25 Salami, A, Vercelloti, T, Mora, R, Dellepiane, M. Piezoelectric bone surgery in otologic surgery. Otolaryngol Head Neck Surg 2007;136:484–5Google Scholar
26 Salami, A, Mora, R, Mora, F, Guastini, L, Salzano, F, Dellepiane, M. Learning curve for piezosurgery in well-trained otological surgeons. Otolaryngol Head Neck Surg 2010;142:120–5Google Scholar
27 Kakehata, S, Watanabe, T, Ito, T, Kubota, T, Furukawa, T. Extension of indications for transcanal endoscopic ear surgery using an ultrasonic bone curette for cholesteatomas. Otol Neurotol 2013;35:101–7CrossRefGoogle Scholar
28 Presutti, L, Alicandri-Ciufelli, M, Cigarini, E, Marchioni, D. Cochlear schwannoma removed through the external auditory canal by a transcanal exclusive endoscopic technique. Laryngoscope 2013;123:2862–7Google Scholar
29 Weber, JD, Samy, RN, Nahata, A, Zuccarello, M, Pensak, ML, Golub, JS. Reduction of bone dust with ultrasonic bone aspiration: implications for retrosigmoid vestibular schwannoma removal. Otolaryngol Head Neck Surg 2015;152:1102–7Google Scholar
30 Golub, JS, Weber, JD, Leach, JL, Pottschmidt, NR, Zuccarello, M, Pensak, ML et al. Feasibility of the ultrasonic bone aspirator in retrosigmoid vestibular schwannoma removal. Otolaryngol Head Neck Surg 2015;153:427–32Google Scholar
31 Gerbault, O, Daniel, RK, Kosins, AM. The role of piezoelectric instrumentation in rhinoplasty surgery. Aesthet Surg J 2016;36:2134 CrossRefGoogle ScholarPubMed
32 Greywoode, J, Pritbitkin, E. Sonic rhinoplasty: histologic correlates and technical refinements using the ultrasonic bone aspirator. Arch Facial Plast Surg 2011;13:316–21Google Scholar
33 Sindwani, R, Manz, R. Technological innovations in tissue removal during rhinologic surgery. Am J Rhinol Allergy 2012;26:65–9Google Scholar
34 Salami, A, Dellepiane, M, Salzano, F, Mora, R. Piezosurgery in endoscopic dacryocystorhinostomy. Otolaryngol Head Neck Surg 2009;140:264–6Google Scholar
35 Murchison, AP, Pritbitkin, EA, Rosen, MR, Bilyk, JR. The ultrasonic bone aspirator in transnasal endoscopic dacryocystorhinostomy. Ophthal Plast Reconstr Surg 2013;29:25–9Google Scholar
36 Steele, TO, Wilson, M, Strong, EB. Ultrasonic bone aspirator assisted endoscopic dacryocystorhinostomy. Am J Otolaryngol 2016;37:202–6Google Scholar
37 Chappell, M, Moe, K, Chang, S. Learning curve for use of the Sonopet ultrasonic aspirator in endoscopic dacryocystorhinostomy. Orbit 2014;33:270–5Google Scholar
38 Greywoode, J, Van Abel, K, Pritbitkin, E. Ultrasonic bone aspirator turbinoplasty: a novel approach for management of inferior turbinate hypertrophy. Laryngoscope 2010;120(suppl 4):S239 Google Scholar
39 Kim, JY, Choi, G, Kwon, JH. The application of an ultrasonic bone aspirator for septoturbinoplasty. J Craniofac Surg 2015;26:893–6CrossRefGoogle ScholarPubMed
40 Roy, S, Iloreta, AM, Bryant, LM, Krein, HD, Pribitkin, EA, Heffelfinger, RN. Piriform aperture enlargement for nasal obstruction: piriform aperture enlargement. Laryngoscope 2015;125:2468–71Google Scholar
41 Pagella, F, Giourgos, G, Matti, E, Colombo, A, Carena, P. Removal of a fronto-ethmoidal osteoma using Sonopet Omni ultrasonic bone curette: first impressions. Laryngoscope 2008;118:307–9CrossRefGoogle ScholarPubMed
42 Gotlib, T, Niemczyk, K. Transnasal endoscopic piezoelectric assisted removal of frontal sinus osteoma. Laryngoscope 2013;123:588–90Google Scholar
43 Ehieli, E, Chu, J, Gordin, E, Pritbitkin, E. Frontal sinus osteoma removal with the ultrasonic bone aspirator. Laryngoscope 2012;122:736–7Google Scholar
44 Villaret, A, Schreiber, A, Esposito, I, Nicolai, P. Endoscopic ultrasonic curette-assisted removal of frontal osteomas. Acta Otorhinolaryngol Ital 2014;34:205–8Google Scholar
45 Bolger, W. Piezoelectric surgical device in endoscopic sinus surgery: an initial clinical experience. Ann Otol Rhinol Laryngol 2009;118:621–4Google Scholar
46 Mancini, G, Buonaccorsi, S, Reale, G, Massimiliano, T. Application of piezoelectric device in endoscopic sinus surgery. J Craniofac Surg 2012;23:1736–40Google Scholar
47 Stapleton, AL, Tyler-Kabara, EC, Gardner, PA, Snyderman, CH. Endoscopic endonasal surgery for benign fibro-osseous lesions of the pediatric skull base: fibro-osseous tumors of pediatric skull base. Laryngoscope 2015;125:2199–203Google Scholar
48 Yamasaki, T, Moritake, K, Nagai, H, Uemera, T, Shingu, T, Matsumoto, Y. A new, miniature ultrasonic surgical aspirator with a handpiece designed for transsphenoidal surgery. Technical note. J Neurosurg 2003;99:177–9Google Scholar
49 Burgin, S, Porter, R, Mehrota, S, Welch, K. Chondroblastoma of the sphenoid sinus. Otolaryngol Head Neck Surg 2010;143:591–2Google Scholar
50 Lubbe, D, Fisher-Jeffes, N, Semple, P. Endoscopic resection of skull base tumours utilizing the ultrasonic dissector. J Laryngol Otol 2012;126:625–9Google Scholar
51 Baddour, M, Lupa, M, Patel, Z. Comparing use of the Sonopet® ultrasonic bone aspirator to traditional instrumentation during the endoscopic transsphenoidal approach in pituitary tumour resection. Int Forum Allergy Rhinol 2013;3:588–91CrossRefGoogle Scholar
52 Halum, S, Patel, N, Hoffman, R, Simpson, B, Merati, A. Medialisation thyroplasty window creation using an ultrasonic aspirator. Laryngoscope 2005;115:155–8Google Scholar
53 Daniero, J, Spiegel, J, Brody, R, Fickes, M. Ultrasonic surgical aspirator assisted phonosurgery: a novel technique for laryngeal cartilage dissection. Laryngoscope 2014;124:1909–11Google Scholar
54 Yawn, RJ, Daniero, JJ, Gelbard, A, Wootten, CT. Novel application of the Sonopet for endoscopic posterior cricoid split and cartilage graft laryngoplasty. Laryngoscope 2016;126:941–4Google Scholar
55 Claire, S, Lea, S, Walmsley, D. Characterisation of bone following ultrasonic cutting. Clin Oral Investig 2013;17:905–12Google Scholar
56 Romeo, U, Del Vecchio, A, Palaia, G, Tenore, G, Visca, P, Maggiore, C. Bone damage induced by different cutting instruments--an in vitro study. Braz Dent J 2009;20:162–8Google Scholar
57 Salami, A, Dellepiane, M, Crippa, B, Mora, R. A new method for osteotomies in oncologic nasal surgery: piezosurgery. Am J Otolaryngol Head Neck Surg 2010;31:150–3Google Scholar
58 Rullo, R, Addabbo, F, Papaccio, G, D'Aquino, R, Festa, VM. Piezoelectric device vs. conventional rotative instruments in impacted third molar surgery: relationships between surgical difficulty and postoperative pain with histological evaluations. J Craniomaxillofac Surg 2013;41:e338 CrossRefGoogle ScholarPubMed
59 Metzger, M, Bormann, K, Schoen, R, Gellrich, N, Schmelzeisen, R. Inferior alveolar nerve transposition--an in vitro comparison between piezosurgery and conventional burr use. J Oral Implantol 2006;1:1925 Google Scholar
60 Wick, C, Rezaee, R, Zender, C. Piezoelectric BoneScalpel osteotomies in osteocutaneous free flaps. Laryngoscope 2013;123:618–21Google Scholar