Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-16T09:59:43.069Z Has data issue: false hasContentIssue false

Population genetics of Plasmodium falciparum within a malaria hyperendemic area

Published online by Cambridge University Press:  06 April 2009

D. J. Conway
Affiliation:
Institute of Cell, Animal and Population Biology, University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, Scotland, U.K.
J. S. McBride
Affiliation:
Institute of Cell, Animal and Population Biology, University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, Scotland, U.K.

Extract

Serotyping with monoclonal antibodies was used to estimate the number and frequencies of allelic variants of two merozoite surface proteins, MSP1 and MSP2, and an exported protein Exp-1, in a sample of 344 clinical isolates of Plasmodium falciparum from an urban region of The Gambia. Represented among the isolates were 36, 8 and 2 alleles of the MSP1, MSP2 and Exp-1 loci respectively. Relative frequencies of these alleles remained stable in the parasite population over the 2 years of the study. A computer program was used to calculate from the frequencies of individual alleles at the three loci, the probable number of different genotypes in samples from the population, assuming random assortment among the loci. No significant difference was found between the expected and the observed genotype diversity. It is concluded that recombination among unlinked loci is a common consequence of sexual reproduction of P. falciparum in The Gambia. Slightly lower genotype diversity was observed in each of two villages, which may be a consequence of smaller population size compared with the urban region.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beale, G. H., Carter, R. & Walliker, D. (1978). Genetics. In Rodent Malaria (ed. Killick-Kendrick, R. & Peters, W.), pp. 213–45. London: Academic Press.Google Scholar
Burkot, T. R., Williams, J. L. & Schneider, I. (1984). Infectivity to mosquitoes of Plasmodium falciparum clones grown in vitro from the same isolate. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 339–41.CrossRefGoogle ScholarPubMed
Carter, R. & McGregor, I. A. (1973). Enzyme variation in Plasmodium falciparum in the Gambia. Transactions of the Royal Society of Tropical Medicine and Hygiene 67, 830–7.CrossRefGoogle ScholarPubMed
Carter, R. & Voller, A. (1975). The distribution of enzyme variation in populations of Plasmodium falciparum in Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene 69, 371–6.CrossRefGoogle ScholarPubMed
Conway, D. J., Greenwood, B. M. & McBride, J. S. (1991). The epidemiology of multiple-clone Plasmodium falciparum infections in Gambian patients. Parasitology 103, 16.CrossRefGoogle ScholarPubMed
Clark, J. T., Donachie, S., Anand, R., Wilson, C. F., Heidrich, H.-G. & McBride, J. S. (1989). 46–53 kilodalton glycoprotein from the surface of Plasmodium falciparum merozoites. Molecular and Biochemical Parasitology 32, 1524.CrossRefGoogle ScholarPubMed
Creasey, A., Fenton, B., Walker, A., Thaithong, S., Oliveira, S., Mutambu, S. & Walliker, D. (1990). Genetic diversity of Plasmodium falciparum shows geographical variation. American Journal of Tropical Medicine and Hygiene 42, 403–13.CrossRefGoogle ScholarPubMed
Fenton, B. (1988). Studies on polymorphic proteins of Plasmodium falciparum. Ph.D. thesis, University of Edinburgh.Google Scholar
Fenton, B., Clark, J. T., Khan, C. M. A., Robinson, J. V., Walliker, D., Ridley, R., Scaife, J. G. & McBride, J. S. (1991). Structural and antigenic polymorphism of the 35 to 48 kilodalton merozoite surface antigen (MSA-2) of the malaria parasite Plasmodium falciparum. Molecular and Cellular Biology 11, 963–71.Google ScholarPubMed
Fenton, B., Clark, J. T., Wilson, C. F., McBride, J. S. & Walliker, D. (1989). Polymorphism of a 35–48 kDa Plasmodium falciparum merozoite surface antigen. Molecular and Biochemical Parasitology 34, 7986.CrossRefGoogle ScholarPubMed
Fenton, B., Walker, A. & Walliker, D. (1985). Protein variation in clones of Plasmodium falciparum detected by two dimensional electrophoresis. Molecular and Biochemical Parasitology 16, 173–83.CrossRefGoogle ScholarPubMed
Forsyth, K. P., Anders, R. F., Cattani, J. A. & Alpers, M. P. (1989). Small area variation in the prevalence of an S-Antigen serotype of Plasmodium falciparum in villages of Madang, Papua New Guinea. American Journal of Tropical Medicine and Hygiene 40, 344–50.CrossRefGoogle ScholarPubMed
Forsyth, K. P., Anders, R. F., Kemp, D. J. & Alpers, M. P. (1988). New approaches to the serotypic analysis of the epidemiology of Plasmodium falciparum. Philosophical Transactions of the Royal Society of London, B 321, 485–93.Google Scholar
Gentz, R., Certa, U., Takacs, B., Matile, H., Dobeli, H., Pink, R., Mackay, M., Bone, N. & Scaife, J. G. (1988). Major surface antigen of Plasmodium falciparum: detection of common epitopes present in a variety of plasmodia isolates. EMBO Journal 7, 225–30.CrossRefGoogle Scholar
Holder, A. A., Lockyer, M. J., Odink, K. G., Sandhu, J. S., Riveros-Moreno, V., Nicholls, S. C., Hillman, Y., Davey, L. S., Tizard, M. L. V., Schwarz, R. T. & Freeman, R. R. (1985). Primary structure of the precursor to the three major surface antigens of Plasmodium falciparum merozoites. Nature, London 317, 270–3.CrossRefGoogle Scholar
Howard, R. F., Stanley, H. A., Campbell, G. H., Langreth, S. & Reese, R. T. (1985). Two Plasmodium falciparum merozoite surface polypeptides share epitopes with a single Mr 185 000 parasite glycoprotein. Molecular and Biochemical Parasitology 17, 6177.CrossRefGoogle Scholar
Joshi, H., Subbarao, S. K., Raghavendra, K. & Sharma, V. P. (1989). Plasmodium vivax: enzyme polymorphism in isolates of Indian origin. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, 179–81.CrossRefGoogle ScholarPubMed
Lyon, J. A., Haynes, J. D., Diggs, C. L., Chulay, J. D., Haidaris, C. G. & Pratt-Rossiter, J. (1987). Monoclonal antibody characterisation of the 195-kilodalton major surface glycoprotein of Plasmodium falciparum malaria schizonts and merozoites: identification of additional processed products and a serotype-restricted repetitive epitope. Journal of Immunology 138, 895901.CrossRefGoogle Scholar
Kemp, D. J., Cowman, A. F. & Walliker, D. (1990). Genetic diversity in Plasmodium falciparum. In Advances in Parasitology, vol. 29 (ed. Baker, J. R. & Muller, R.), pp. 75149. London: Academic Press.Google Scholar
Kemp, D. J., Thomspon, J. K., Walliker, D. & Corcoran, L. M. (1987). Molecular karyotype of Plasmodium falciparum: conserved linkage groups and expendable histidine-rich protein genes. Proceedings of the National Academy of Sciences, USA 84, 7672–6.CrossRefGoogle ScholarPubMed
Kimura, M. (1955). Solution of a process of random genetic drift with a continuous model. Proceedings of the National Academy of Sciences, USA 41, 144–50.CrossRefGoogle ScholarPubMed
Kimura, M. & Crow, J. F. (1964). The number of alleles that can be maintained in a finite population. Genetics 49, 725–38.CrossRefGoogle Scholar
Kimura, M. & Ohta, T. (1971). Theoretical Aspects of Population Genetics. Princeton: Princeton University Press.Google ScholarPubMed
Marsh, K., Otoo, L., Hayes, R. J., Carson, D. C. & Greenwood, B. M. (1989). Antibodies to blood stage antigens of Plasmodium falciparum in rural Gambians and their relation to protection against infection. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, 293303.CrossRefGoogle ScholarPubMed
McBride, J. S. & Heidrich, H.-G. (1987). Fragments of the polymorphic M r 185 000 glycoprotein from the surface of isolated Plasmodium falciparum merozoites form an antigenic complex. Molecular and Biochemical Parasitology 23, 7184.CrossRefGoogle Scholar
McBride, J. S., Newbold, C. I. & Anand, R. (1985). Polymorphism of a high molecular weight schizont antigen of the human malaria parasite Plasmodium falciparum. Journal of Experimental Medicine 161, 160–80.CrossRefGoogle ScholarPubMed
McBride, J. S., Welsby, P. D. & Walliker, D. (1984). Serotyping of Plasmodium falciparum from acute human infections using monoclonal antibodies. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 32–4.CrossRefGoogle ScholarPubMed
Sanderson, A., Walliker, D. & Molez, J.-F. (1981). Enzyme typing of Plasmodium falciparum from African and some other Old World countries. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 263–7.CrossRefGoogle ScholarPubMed
Saul, A., Lord, R., Jones, G., Geysen, H. M., Gale, J. & Mollard, R. (1989). Cross reactivity of antibody against an epitope of the Plasmodium falciparum second merozoite surface antigen. Parasite Immunology 11, 593601.CrossRefGoogle ScholarPubMed
Simmons, D., Woollett, G., Bergin-Cartwright, M., Kay, D. & Scaife, J. (1987). A malaria protein exported into a new compartment within the host erythrocyte. EMBO Journal 6, 485–91.CrossRefGoogle ScholarPubMed
Sinden, R. E., Hartley, R. H. & Winger, L. (1985). The development of Plasmodium ookinetes in vitro: an ultrastructural study including a description of meiotic division. Parasitology 91, 227–44.CrossRefGoogle ScholarPubMed
Smythe, J. A., Peterson, M. G., Coppell, R. L., Saul, A., Kemp, D. J. & Anders, R. F. (1990). Structural diversity in the 45-kilodalton merozoite surface antigen of Plasmodium falciparum. Molecular and Biochemical Parasitology 39, 227–34.CrossRefGoogle ScholarPubMed
Stanley, H. A., Howard, R. F. & Reese, R. T. (1985). Recognition of a M r 56 K glycoprotein on the surface of Plasmodium falciparum merozoites by mouse monoclonal antibodies. Journal of Immunology 134, 3439–44.CrossRefGoogle Scholar
Tanabe, K., Mackay, M., Goman, M. & Scaife, J. G. (1987). Allelic dimorphism in a surface antigen gene of the malaria parasite Plasmodium falciparum. Journal of Molecular Biology 195, 273–87.CrossRefGoogle Scholar
Tibayrenc, M., Kjellberg, F. & Ayala, F. J. (1990). A clonal theory of parasitic protozoa: the population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomic consequences. Proceedings of the National Academy of Sciences, USA 87, 2414–18.CrossRefGoogle Scholar
Walliker, D. (1985). Characterisation of Plasmodium falciparum of different countries. Annales de la Société Belge de la Médécine Tropicale 65 (Suppl. 2), 6977.Google ScholarPubMed
Walliker, D. (1989). Implications of genetic exchange in the study of protozoan infections. Parasitology 99 (Suppl.) S49S58.CrossRefGoogle Scholar
Walliker, D., Quakyi, I. A., Wellems, T. E., McCutchan, T. F., Szarfman, A., London, W. T., Corcoran, L. M., Burkot, T. R. & Carter, R. (1987). Genetic analysis of the human malaria parasite Plasmodium falciparum. Science 236, 1661–6.CrossRefGoogle ScholarPubMed