Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T22:26:49.869Z Has data issue: false hasContentIssue false

Analysis of two-dimensional protein patterns from developmental stages of the potato cyst-nematode, Globodera rostochiensis

Published online by Cambridge University Press:  06 April 2009

J. M. De Boer
Affiliation:
Department of Nematology, Wageningen Agricultural University, P.O. Box 8123, 6700 ES Wageningen, The Netherlands
H. A. Overmars
Affiliation:
Department of Nematology, Wageningen Agricultural University, P.O. Box 8123, 6700 ES Wageningen, The Netherlands
J. Bakker
Affiliation:
Department of Nematology, Wageningen Agricultural University, P.O. Box 8123, 6700 ES Wageningen, The Netherlands
F. J. Gommers
Affiliation:
Department of Nematology, Wageningen Agricultural University, P.O. Box 8123, 6700 ES Wageningen, The Netherlands

Summary

Two-dimensional polyacrylamide gel electrophoresis was used to examine the differences in total protein composition between two motile stages and two sedentary stages of the potato cyst-nematode, Globodera rostochiensis. Using a sensitive silver stain, 542 reproducible protein spots were distinguished. A list of these spots is presented, showing their apparent molecular weights, estimated isoelectric points, and occurrences in the different developmental stages. When the protein patterns were compared, 401 spots were found to change their presence or size in one or more of the four developmental stages. It is therefore estimated that during the post-embryonic development of G. rostochiensis, 74% of the polypeptides undergo modulation of their synthesis, or are affected by protein degradation or modification. In the motile stages several abundant proteins were present, which disappeared or decreased in concentration in the sedentary stages. Some of these proteins are presumably muscle proteins, and their modulation may illustrate the degeneration of body-wall musculature in the sedentary stages. It is concluded that the potato cyst-nematode has a very dynamic protein metabolism.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aquadro, C. F. & Avise, J. C. (1981). Genetic divergence between rodent species assessed by using twodimensional electrophoresis. Proceedings of the National Academy of Sciences, USA 78, 3784–8.CrossRefGoogle ScholarPubMed
Ardizzi, J. P. & Epstein, H. F. (1987). Immunochemical localization of myosin heavy chain isoforms and paramyosin in developmentally and structurally diverse muscle cell types of the nematode Caenorhabditis elegans. Journal of Cell Biology 105, 2763–70.CrossRefGoogle ScholarPubMed
Bakker, J. & Bouwman-Smits, L. (1988). Genetic variation in polypeptide maps of two Globodera rostochiensis pathotypes. Phytopathology 78, 894900.CrossRefGoogle Scholar
Boxberg, Y. V. (1988). Protein analysis on twodimensional polyacrylamide gels in the femtogram range: use of a new sulfur-labeling reagent. Analytical Biochemistry 169, 372–5.CrossRefGoogle ScholarPubMed
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248–54.CrossRefGoogle ScholarPubMed
Bretscher, A. (1991). Microfilament structure and function in the cortical cytoskeleton. Annual Review of Cell Biology 7, 337–74.CrossRefGoogle ScholarPubMed
Cardelli, J. A., Knecht, D. A., Wunderlich, R. & Dimond, R. L. (1985). Major changes in gene expression occur during at least four stages of development of Dictyostelium discoideum. Developmental Biology 110, 147–56.CrossRefGoogle ScholarPubMed
Chitwood, B. G. & Buhrer, E. M. (1946). The life history of the golden nematode of potatoes, Heterodera rostochiensis Wollenweber, under Long Island, New York, conditions. Phytopathology 36, 180–9.Google ScholarPubMed
Clarke, A. J. & Perry, R. N. (1977). Hatching of cystnematodes. Nematologica 23, 350–68.Google Scholar
CôTé, G. P. (1983). Structural and functional properties of the non-muscle tropomyosins. Molecular and Cellular Biochemistry 57, 127–46.CrossRefGoogle ScholarPubMed
Crise Meuler, D. & Malacinski, G. M. (1985). An analysis of protein synthesis patterns during early embryogenesis of the urodele–Ambystoma mexicanum. Journal of Embryology and Experimental Morphology 89, 7192.Google Scholar
Epstein, H. F., Berman, S. A. & Miller, D. M. (1982). Myosin synthesis and assembly in nematode body-wall muscle. In Muscle Development, Molecular and Cellular Control (ed. Pearson, M. L. & Epstein, H. F.), pp. 419–27. Cold Spring Harbor: Cold Spring Harbor Lab.Google Scholar
Evans, K. & Stone, A. R. (1977). A review of the distribution and biology of the potato cyst-nematodes Globodera rostochiensis and G. pallida. Pest Articles and News Summaries 23, 178–89.Google Scholar
Ferris, V. R., Ferris, J. M., Murdock, L. L. & Faghihi, J. (1986). Heterodera glycines in Indiana. III. 2-D protein patterns of geographical isolates. Journal of Nematology 18, 177–82.Google ScholarPubMed
Garrels, J. I. & Gibson, W. (1976). Identification and characterization of multiple forms of actin. Cell 9, 793805.CrossRefGoogle ScholarPubMed
Gelsema, W. J., De Ligny, C. L. & Van Der Veen, N. G. (1978). Isoelectric focusing as a method for the characterization of ampholytes. III. Isoelectric points of carrier ampholytes and dissociation constants of some carboxylic acids and alkyl-substituted ammonium ions in sucrose–water, glycerol–water, and ethylene glycol–water mixtures. Journal of Chromatography 154, 161–74.CrossRefGoogle Scholar
Gelsema, W. J., De Ligny, C. L. & Van Der Veen, N. G. (1979). Isoelectric points of proteins, determined by isoelectric focusing in the presence of urea and ethanol. Journal of Chromatography 171, 171–81.CrossRefGoogle ScholarPubMed
Günther, B. (1972). Untersuchungen zum Kutikula-Aufbau und zum Häutungsverlauf bei einigen Nematodenarten. Nematologica 18, 275–87.CrossRefGoogle Scholar
Harris, H. E. & Epstein, H. F. (1977). Myosin and paramyosin of Caenorhabditis elegans: biochemical and structural properties of wild-type and mutant proteins. Cell 10, 709–19.CrossRefGoogle ScholarPubMed
Harris, H. E., Tso, M. Y. W. & Epstein, H. F. (1977). Actin and myosin-linked calcium regulation in the nematode Caenorhabditis elegans. Biochemical and structural properties of native filaments and purified proteins. Biochemistry 16, 859–65.CrossRefGoogle ScholarPubMed
Johnson, K. & Hirsh, D. (1979). Patterns of proteins synthesized during development of Caenorhabditis elegans. Developmental Biology 70, 241–8.CrossRefGoogle ScholarPubMed
Jones, M. G. K. & Northcote, D. H. (1972). Nematode-induced syncytium–a multinucleate transfer cell. Journal of Cell Science 10, 789809.CrossRefGoogle ScholarPubMed
Kimura, K., Tanaka, T., Nakae, H. & Obinata, T. (1987). Troponin from nematode: purification and characterization of troponin from Ascaris body-wall muscle. Comparative Biochemistry and Physiology B—Comparative Biochemistry 88, 399407.CrossRefGoogle Scholar
Klose, J. (1982). Genetic variability of soluble proteins studied by two-dimensional electrophoresis on different inbred mouse strains and on different mouse organs. Journal of Molecular Evolution 18, 315–28.CrossRefGoogle ScholarPubMed
Lovell-Badge, R. H., Evans, M. J. & Bellairs, R. (1985). Protein synthetic patterns of tissues in the early chick embryo. Journal of Embryology and Experimental Morphology 85, 6580.Google ScholarPubMed
Mcgibbon, A. M. & Mackinnon, B. M. (1990). Developmental and age-related changes in proteins in the female reproductive tract of Heligmosomoides polygyrus (Nematoda). Journal of Parasitology 76, 669–75.CrossRefGoogle ScholarPubMed
Oakley, B. R., Kirsch, D. R. & Morris, N. R. (1980). A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Analytical Biochemistry 105, 361–3.CrossRefGoogle ScholarPubMed
O'Donnell, I. J., Dineen, J. K., Wagland, B. M., Letho, S., Werkmeister, J. A. & Ward, C. W. (1989). A novel host-protective antigen from Trichostrongylus colubriformis. International Journal for Parasitology 19, 327–35.CrossRefGoogle ScholarPubMed
O'Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry 250, 4007–21.CrossRefGoogle ScholarPubMed
Ohms, J. P. & Heinicke, D. H. K. (1985). Pathotypes of the potato cyst-nematode. II. Identification of the pathotypes of Globodera rostochiensis by micro-2D–electrophoresis of single cysts. Journal of Plant Diseases and Protection 92, 225–32.Google Scholar
Patton, W. F., Dhanak, M. R. & Jacobson, B. S. (1989). Identification of Dictyostelium discoideum plasma membrane proteins by cell surface labeling and quantitative two-dimensional gel electrophoresis. Analytical Biochemistry 179, 3749.CrossRefGoogle ScholarPubMed
Racusen, R. H. & Schiavone, F. M. (1988). Detection of spatially- and stage-specific proteins in extracts from single embryos of the domesticated carrot. Development 103, 665–74.CrossRefGoogle Scholar
Raski, D. J. (1950). The life history and morphology of the sugar-beet nematode, Heterodera schachtii Schmidt. Phytopathology 40, 135–51.Google Scholar
Savageau, M. A. (1986). Proteins of Escherichia coli come in sizes that are multiples of 14 kDa: domain concepts and evolutionary implications. Proceedings of the National Academy of Sciences, USA 83, 1198–202.CrossRefGoogle ScholarPubMed
Schachat, F. H., Harris, H. E. & Epstein, H. F. (1977). Two homogeneous myosins in body-wall muscle of Caenorhabditis elegans. Cell 10, 721–8.CrossRefGoogle ScholarPubMed
Scott, A. L., Dinman, J., Sussman, D. J. & Ward, S. (1989). Major sperm protein and actin genes in free-living and parasitic nematodes. Parasitology 98, 471–8.CrossRefGoogle ScholarPubMed
Sharrock, W. J. (1984). Cleavage of two yolk proteins from a precursor in Caenorhabditis elegans. Journal of Molecular Biology 174, 419–31.CrossRefGoogle ScholarPubMed
Shepherd, A. M. & Clark, S. A. (1978). Cuticle structure and ‘cement’ formation at the anterior end of female cyst-nematodes of the genera Heterodera and Globodera (Heteroderidae: Tylenchida). Nematologica 24, 201–8.Google Scholar
Shepherd, A. M., Clark, S. A. & Dart, P. J. (1972). Cuticle structure in the genus Heterodera. Nematologica 18, 117.CrossRefGoogle Scholar
Sokal, R. R. & Rohlf, J. F. (1981). Biometry, 2nd Edn.San Francisco: Freeman.Google Scholar
Sommer, S. S. & Cohen, J. E. (1980). The size distributions of proteins, mRNA, and nuclear RNA. Journal of Molecular Evolution 15, 3757.CrossRefGoogle ScholarPubMed
Summers, M. C., Bedian, V. & Kauffman, S. A. (1986). An analysis of stage-specific protein synthesis in the early Drosophila embryo using high-resolution, two-dimensional gel electrophoresis. Developmental Biology 113, 4963.CrossRefGoogle Scholar
Tanaka, T. & Kawamura, K. (1988). Cardiac muscle protein analysis by high-resolution and microscale two-dimensional gel electrophoresis. Electrophoresis 9, 94100.CrossRefGoogle ScholarPubMed
Tomlinson, C. R., Bates, W. R. & Jeffery, W. R. (1987). Development of a muscle actin specified by maternal and zygotic mRNA in ascidian embryos. Developmental Biology 123, 470–82.CrossRefGoogle ScholarPubMed
Wisse, E. & Daems, W. TH. (1968). Electron microscopic observations on second-stage larvae of the potato root eelworm Heterodera rostochiensis. Journal of Ultrastructure Research 24, 210–31.CrossRefGoogle ScholarPubMed
Zeindl-Eberhart, E., GROHé, G. & Klose, J. (1987). Analysis of protein patterns from different organs and cell fractions of trisomy 19 mice. Human Genetics 77, 371–8.CrossRefGoogle ScholarPubMed