Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T00:40:15.019Z Has data issue: false hasContentIssue false

Characterization of the effector mechanisms of a transmission-blocking antibody upon differentiation of Plasmodium berghei gametocytes into ookinetes in vitro

Published online by Cambridge University Press:  06 April 2009

G. R. R. Ranawaka
Affiliation:
Molecular and Cellular Parasitology Research Group, Department of Biology, Imperial College, London SW7 2BB
A. R. Alejo-Blanco
Affiliation:
Molecular and Cellular Parasitology Research Group, Department of Biology, Imperial College, London SW7 2BB
R. E. Sinden
Affiliation:
Molecular and Cellular Parasitology Research Group, Department of Biology, Imperial College, London SW7 2BB

Summary

The transmission-blocking monoclonal antibody 13.1, which recognizes the ookinete surface antigen Pbs21 of Plasmodium berghei, and an IgG2a isotype control antibody 26.37 were purified by caprylic acid and ammonium sulphate precipitation. Fab fragments were prepared by papain digestion. IgG but not Fab from antibody 13.1 reduced ookinete formation by P. berghei in culture by as much as 94% at a concentration of 100 μg/ml. There was little difference in antibody efficacy in the range 6·25–400 μg/ml in this assay. The parasite was most sensitive to antibody activity in the first 6–9 h of culture, i.e. the gamete/zygote and early retort stages. Peripheral blood leucocytes (PBL) were essential to achieve maximal inhibition by mAb 13.1 (activity was abrogated totally if PBL were removed). Together the data suggest that one of the mechanisms of action of this antibody is antibody-mediated PBL killing. Phagocytosis of parasites was noted in these experiments in all cultures. We have not attempted in this study to distinguish between Fc-mediated opsonization, as opposed to antibody-dependent cellular cytotoxicity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aikawa, M., Rener, J., Carter, R. & Miller, L. H. (1981). An electron microscopical study of the interaction of monoclonal antibodies with gametes of the malarial parasite Plasmodium gallinaceum. Journal of Protozoology 28, 383–8.CrossRefGoogle ScholarPubMed
Barr, P. J., Green, K. M., Gibson, H. L., Bathurst, I. C., Quakyi, I. A. & Kaslow, D. C. (1991). Recombinant Pfs25 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in experimental animals. Journal of Experimental Medicine 174, 1203–8.CrossRefGoogle ScholarPubMed
Billingsley, P. F., Medley, G. F., Charlwood, J. D. & Sinden, R. E. (1994). Relationship between prevalence and intensity of Plasmodium falciparum infection in natural populations of Anopheles mosquitoes. American Journal of Tropical Medicine and Hygiene (in the Press).CrossRefGoogle ScholarPubMed
Blobel, C. P., Wolfsberg, T. G., Turck, C. W., Myles, D. G., Primakoff, P. & White, J. M. (1992). A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature, London 356, 248–52.CrossRefGoogle Scholar
Carter, R., Graves, P. M., Keister, D. B. & Quakyi, I. A. (1990). Properties of epitopes of Pfs48/45, a target of transmission-blocking monoclonal antibodies, on gametes of different isolates of Plasmodium falciparum. Parasite Immunology 12, 587603.CrossRefGoogle Scholar
Duffy, P. E., Pimenta, P. & Kaslow, D. C. (1993). Pgs28 belongs to a family of epidermal growth factor like antigens that are targets of malaria transmission-blocking antibodies. Journal of Experimental Medicine 177, 505–10.CrossRefGoogle ScholarPubMed
Grotendorst, C. A. & Carter, R. (1987). Complement effects on the infectivity of Plasmodium gallinaceum to Aedes aegypti mosquitoes. II. Changes in sensitivity to complement-like factors during zygote development. Journal of Parasitology 73, 980–4.CrossRefGoogle ScholarPubMed
Grotendorst, C. A., Carter, R., Rosenberg, R. & Koontz, L. (1986). Complement effects on the infectivity of Plasmodium gallinaceum to Aedes aegypti mosquitoes. I. Resistance of zygotes to the alternative pathway of complement. Journal of Immunology 136, 4270–4.CrossRefGoogle Scholar
Janse, C. J., Rouwenhorst, R. J., Klooster Van Der, P. F. J., Kaay Van Der, H. J. & Overdulve, J. P. (1985). Development of Plasmodium berghei ookinetes in the midgut of Anopheles atroparvus mosquitoes and in vitro. Parasitology 91, 219–25.CrossRefGoogle ScholarPubMed
Kaslow, D. C., Bathurst, I. C. & Barr, P. J. (1992). Malaria transmission-blocking vaccines. Trends in Biotechnology 10, 388–91.CrossRefGoogle ScholarPubMed
Kaushal, D. C., Carter, R., Rener, J., Grotendorst, C. A., Miller, L. H. & Howard, R. J. (1983). Monoclonal antibodies against surface determinants on gametes of Plasmodium gallinaceum block transmission of malaria parasites to mosquitoes. Journal of Immunology 131, 2557–62.CrossRefGoogle ScholarPubMed
Kumar, N. & Carter, R. (1985). Biosynthesis of two stage-specific membrane proteins during transformation of Plasmodium gallinaceum zygotes into ookinetes. Molecular and Biochemical Parasitology 14, 127–39.CrossRefGoogle ScholarPubMed
Parham, P. (1986). Preparation and purification of active fragments from mouse monoclonal antibodies. In Handbook of Experimental Immunology, (ed. Weir, D. M.) pp. 14.114.23. London: Blackwell Scientific Publications.Google Scholar
Ponnudurai, T., Van Gemert, G. J., Bensink, T., Lensen, A. H. W. & Meuwissen, J. H. E. TH. (1987). Transmission blockade of Plasmodium falciparum: its variability with gametocyte numbers and concentration of antibody. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 491–3.CrossRefGoogle ScholarPubMed
Quakyi, I. A., Carter, R., Rener, J., Kumar, N., Good, M. F. & Miller, L. H. (1987). The 230-kDa gamete surface protein of Plasmodium falciparum is also a target for transmission-blocking antibodies. Journal of Immunology 139, 4213–17.CrossRefGoogle ScholarPubMed
Ranawaka, G., Alejo-Blanco, R. & Sinden, R. E. (1993). The effect of transmission-blocking antibody ingested in primary and secondary blood feeds, upon the development of Plasmodium berghei in the mosquito vector. Parasitology 107, 225–31.CrossRefGoogle ScholarPubMed
Rener, J., Graves, P. M., Carter, R., Williams, J. L. & Burkot, T. (1983). Target antigens of transmission-blocking immunity on gametes of Plasmodium falciparum. Journal of Experimental Medicine 158, 971–6.CrossRefGoogle ScholarPubMed
Rutledge, L. C., Gould, D. J. & Tantichareon, B. (1969). Factors affecting the infection of anophelines with human malaria in Thailand. Transactions of the Royal Society of Tropical Medicine and Hygiene 63, 613–19.CrossRefGoogle ScholarPubMed
Sieber, K.-P., Huber, M., Kaslow, D., Banks, S. M., Torii, M., Aikawa, M. & Miller, L. H. (1991). The peritrophic membrane as a barrier: its penetration by Plasmodium gallinaceum and the effect of a monoclonal antibody to ookinetes. Experimental Parasitology 72, 145–56.CrossRefGoogle ScholarPubMed
Simonetti, A. B., Billingsley, P. F., Winger, L. A. & Sinden, R. E. (1993). Kinetics of expression of two major Plasmodium berghei antigens in the mosquito vector Anopheles stephensi. Journal of Eukaryotic Microbiology 40, (in the Press).CrossRefGoogle ScholarPubMed
Sinden, R. E., Canning, E. U. & Spain, B. (1976). Gametogenesis and fertilization in Plasmodium yoelii nigeriensis: a transmission electron microscope study. Proceedings of The Royal Society, London B 193, 5576.Google ScholarPubMed
Sinden, R. E., Hartley, R. H. & Winger, L. (1985). The development of Plasmodium ookinetes in vitro: an ultrastructural study including a description of meiotic division. Parasitology 91, 227–44.CrossRefGoogle ScholarPubMed
Sinden, R. E. & Smalley, M. J. (1976). Gametocytes of Plasmodium falciparum: phagocytosis by leucocytes in vivo and in vitro. Transactions of the Royal Society of Tropical Hygiene and Medicine 70, 344–5.CrossRefGoogle ScholarPubMed
Sinden, R. E., Winger, L. A., Hartley, R. H., Carter, H. E., Tirawanchai, N., Davies, C. S. & Sluiters, J. G. (1987). Ookinete antigens of Plasmodium berghei: a light and electron microscopic immunogold study of the 21kD determinant recognized by transmission blocking antibodies. Proceedings of The Royal Society, London, B 230, 443–58.Google Scholar
Tirawanchai, N., Winger, L. A., Nicholas, J. & Sinden, R. E. (1991). Analysis of immunity induced by the affinity-purified 21 -kilodalton zygote–ookinete surface antigen of Plasmodium berghei. Infection and Immunity 59, 3644.CrossRefGoogle ScholarPubMed
Vermeulen, A. N., Deursen, J. V., Brakenhof, R. H., Lensen, T. H. W., Ponnudurai, T. & Meuwissen, J. H. E. T. (1986). Characterization of Plasmodium falciparum sexual stage antigens and their biosynthesis in synchronized gametocyte cultures. Molecular and Biochemical Parasitology 20, 155–63.CrossRefGoogle ScholarPubMed
Winger, L. A., Smith, J. E., Nicholas, J., Carter, H. E., Tirawanchai, N. & Sinden, R. E. (1988). Ookinete antigens of Plasmodium berghei. Appearance on the zygote of an Mr 21 K surface determinant identified by transmission-blocklng monoclonal antibodies. Parasite Immunology 10, 193207.CrossRefGoogle Scholar