Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T12:26:20.572Z Has data issue: false hasContentIssue false

Risk factors and geospatial modelling for the presence of Fasciola hepatica infection in sheep and goat farms in the Greek temperate Mediterranean environment

Published online by Cambridge University Press:  17 May 2011

V. KANTZOURA
Affiliation:
Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science and Hydrobiology, Agricultural University of Athens, 75 Iera Odos, Votanikos, Athens 11855, Greece
M. K. KOUAM
Affiliation:
Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science and Hydrobiology, Agricultural University of Athens, 75 Iera Odos, Votanikos, Athens 11855, Greece
N. DEMIRIS
Affiliation:
Department of Animal Breeding and Husbandry, Faculty of Animal Science and Hydrobiology, Agricultural University of Athens, 75 Iera Odos St., Votanikos, Athens 11855, Greece
H. FEIDAS
Affiliation:
Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
G. THEODOROPOULOS*
Affiliation:
Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science and Hydrobiology, Agricultural University of Athens, 75 Iera Odos, Votanikos, Athens 11855, Greece
*
*Corresponding author: Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science and Hydrobiology, Agricultural University of Athens, 75 Iera Odos, Votanikos, Athens 11855, Greece. Tel: +30-201-5294387. Fax: +30-201-5294388. E-mail: gtheo@aua.gr

Summary

Risk factors related to herd and farmer status, farm and pasture management, and environmental factors derived by satellite data were examined for their association with the prevalence of F. hepatica in sheep and goat farms in Thessaly, Greece. Twelve farms (16·2%) and 58 farms (78·4%) of 74 had evidence of infection using coproantigen and serology respectively. The average normalized difference vegetation index (NDVI) of farm location for 12 months before sampling was the most significant environmental risk factor for F. hepatica infection based on high seropositivity. The risk of infection increased by 1% when the value of NDVI increased by 0·01 degree. A geospatial map was constructed to show the relative risk (RR) of Fasciola infection in sheep and goat farms in Thessaly. In addition, geospatial maps of the model-based predicted RR for the presence of Fasciola infection in farms in Thessaly and the entire area of Greece were constructed from the developed model based on NDVI. In conclusion, this study demonstrated that Thessaly should be regarded as an endemic region for Fasciola infection and it represents the first prediction model of Fasciola infection in small ruminants in the Mediterranean basin.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abunna, F., Asfaw, L., Megersa, B. and Regassa, A. (2010). Bovine fasciolosis: coprological, abattoir survey and its economic impact due to liver condemnation at Soddo municipal abattoir, Southern Ethiopia. Tropical Animal Health and Production 42, 289292.CrossRefGoogle ScholarPubMed
Alasaad, S., Granados, J. E., Cano-Manual, F. J., Meana, A., Zhu, X. Q. and Perez, J. M. (2008). Epidemiology of fasciolosis affecting Iberian ibex (Capra pyrenaica) in southern Spain. Parasitology Research 102, 751755.CrossRefGoogle ScholarPubMed
Antoniou, M., Lionis, C. and Tselentis, Y. (1997). A focus of Fasciola hepatica in Crete without human cases. European Journal of Epidemiology 13, 99101.CrossRefGoogle ScholarPubMed
Beck, L. R., Lobitz, B. M. and Wood, B. L. (2000). Remote sensing and human health: new sensors and new opportunities. Emerging Infectious Diseases 6, 217227.CrossRefGoogle ScholarPubMed
Bennema, S. C., Ducheyne, E., Vercruysse, J., Claerebout, E., Hendrickx, G. and Charlier, J. (2011). Relative importance of management, meteorological and environmental factors in the spatial distribution of Fasciola hepatica in dairy cattle in a temperate climatic zone. International Journal for Parasitology (in the Press) (doi:10.1016/j.ijpara.2010.09.003).CrossRefGoogle Scholar
Bennema, S. C., Vercruysse, J., Claerebout, E., Schnieder, T., Strube, C., Ducheyne, E., Hendrickx, G. and Charlier, J. (2009). The use of bulk – tank milk ELISA to assess the spatial distribution of Fasciola hepatica, Ostertagia ostertagi and Dictyocaulus viviparous in dairy cattle in Flanders (Belgium). Veterinary Parasitology 165, 5157.CrossRefGoogle Scholar
Boray, J. C. (1969). Experimental fasciolosis in Australia. Advances in Parasitology 7, 95210.CrossRefGoogle ScholarPubMed
Boyce, W. M., Courtney, C. H. and Loggins, P. E. (1987). Resistance to experimental infections with Fasciola hepatica in exotic and domestic breeds of sheep. International Journal for Parasitology 17, 12331237.CrossRefGoogle ScholarPubMed
Coles, G. C. (2005). Anthemintic resistance – looking to the future: a UK perspective. Research in Veterinary Science 78, 99108.CrossRefGoogle Scholar
Cringoli, G., Rinaldi, L., Veneziano, V., Capelli, G. and Malone, J. B. (2002). A cross-sectional coprological survey of liver flukes in cattle and sheep from an area of southern Italian Apennines. Veterinary Parasitology 108, 137143.CrossRefGoogle ScholarPubMed
Cringoli, G., Taddei, R., Rinaldi, L., Veneziano, V., Musella, V., Carcone, C., Sibilio, G. and Malone, J. B. (2004). Use of remote sensing and geographical information systems to identify environmental features that influence the distribution of paramphistomosis in sheep from the southern Italian Apennines. Veterinary Parasitology 122, 1526.CrossRefGoogle ScholarPubMed
Durr, P. A., Tait, N. and Lawson, A. B. (2005). Bayesian hierarchical modelling to enhance the epidemiological value of abattoir surveys for bovine fasciolosis. Preventive Veterinary Medicine 71, 157172.CrossRefGoogle ScholarPubMed
Dwass, M. (1957). Modified randomization tests for nonparametric hypotheses. Annals of Mathematical Statistics 28, 181187.CrossRefGoogle Scholar
Feidas, H. (2010). Validation of satellite rainfall products over Greece. Theoretical and Applied Climatology 99, 193216.CrossRefGoogle Scholar
Fuentes, M. V. (2006). Remote sensing and climate data as a key for understanding fasciolosis transmission in the Andes: a review and update of an ongoing interdisciplinary project. Geospatial Health 1, 5970.CrossRefGoogle Scholar
Fuentes, M. V., Malone, J. B. and Mas-Coma, S. (2001). Validation of a mapping and prediction model for human fasciolosis transmission in Andean very high altitude endemic areas using remote sensing data. Acta Tropica 79, 8795.CrossRefGoogle ScholarPubMed
Hay, S. I., Pacher, M. J. and Rogers, D. J. (1997). The impact of remote sensing on the study and control of invertebrate intermediate hosts and vectors for disease. International Journal of Remote Sensing 15, 28992930.CrossRefGoogle Scholar
Hillyer, G. V. (2005). Fasciola antigens as vaccines against fascioliasis and schistosomiasis. Journal of Helminthology 79, 241247.CrossRefGoogle ScholarPubMed
HSA (2006). Hellenic Statistical Authority (http://www.statistics.gr)Google Scholar
Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., Hong, Y., Stocker, E. F. and Wolff, D. B. (2007). The TRMM multisatellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. Journal of Hydrometeorology 8, 3855.CrossRefGoogle Scholar
Issia, L., Pietrokovsky, S., Sousa-Figueiredo, J., Sttothard, R. and Wisnivesky-Colli, C. (2009). Fasciola hepatica infections in liverstock flock, guanacos and coypus in two wildlife reserves in Argentina. Veterinary Parasitology 165, 341344.CrossRefGoogle Scholar
Khallaayoune, K. H., Stromberg, B. E., Dakkak, A. and Malone, J. B. (1991). Seasonal dynamics of Fasciola hepatica burdens in grazing Timahdit sheep in Marocco. International Journal for Parasitology 21, 307314.CrossRefGoogle Scholar
Kulldorff, M. (1997). A spatial scan statistic. Communications in Statistics – Theory and Methods 26, 14811496.CrossRefGoogle Scholar
Kulldorff, M. and Nagarwalla, N. (1995). Spatial disease clusters: detection and inference. Statistics in Medicine 15, 707715.Google Scholar
Loukas, A., Vasiliades, L. and Tzarbiras, J. (2007). Evaluation of climate change on drought impulses in Thessaly, Greece. European Water 17/18, 1728.Google Scholar
Lunn, D. J., Thomas, A., Best, N. and Spiegelhalter, D. (2000). WinBUGS – a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing 10, 325337.CrossRefGoogle Scholar
Malone, J. B., Gommes, R., Hansen, J., Yilma, J. M., Slingenboerg, J., Snijders, F., Nachtergaele, F. and Ataman, E. (1998). A geographical information system on the potential distribution and abundance of Fasciola hepatica and F. gigantica in east Africa on food and agriculture organization databases. Veterinary Parasitology 78, 87101.CrossRefGoogle Scholar
Malone, J. B., Yilma, J. M., McCarroll, J. C., Erko, B., Mukaratirwa, S. and Zhou, X. (2001). Satellite climatology and the environmental risk of Schistosoma mansoni in Ethiopia and east Africa. Acta Tropica 79, 5972.CrossRefGoogle ScholarPubMed
Mas-Coma, S. (2004). Human fasciolisis. In Waterborne Zoonoses: Identification, Causes and Control (ed. Cotruvo, J. A., Dufour, A., Ress, G., Bartram, J., Carr, R., Cliver, D. O., Craun, G. F., Fayer, R. and Gannon, V. P. J.), pp. 209212. World Health Organization (WHO), IWA Publishing, London, UK.Google Scholar
Mas-Coma, S. and Bargues, M. D. (1997). Human liver flukes: a review. Research and Reviews in Parasitology 57, 145218.Google Scholar
McCann, C. M., Baylis, M. and Williams, D. J. L. (2010). The development of linear regression models using environmental variables to explain the spatial distribution of Fasciola hepatica infection in dairy herds in England and Wales. International Journal for Parasitology 40, 10211028.CrossRefGoogle ScholarPubMed
Mekroud, A., Benakhla, A., Vignoles, P. and Rondelaud, D. (2004). Preliminary studies on the prevalence of natural fasciolosis in cattle, sheep and the host snail (Galba truncatula) in north-eastern Algeria. Parasitology Research 92, 502505.CrossRefGoogle ScholarPubMed
Mitchell, G. B. B., Maris, L. and Bonniwell, M. A. (1998). Triclabendazole-resistant liver fluke in Scottish sheep. Veterinary Record 143, 399.Google ScholarPubMed
Moghaddam, A. S., Massoud, J., Mahmoodi, M., Mahvi, A. H., Periago, M. V., Artigas, P., Fuentes, M. V., Bargues, M. D. and Mas-Coma, S. (2004). Human and animal fascioliasis in Mazandaran province, northern Iran. Parasitology Research 94, 6169.CrossRefGoogle ScholarPubMed
Moll, L., Gaasenbeek, C. P. H., Vellema, P. and Borgsteede, F. H. M. (2000). Resistance of Fasciola hepatica against triclabendazole in cattle and sheep in the Netherlands. Veterinary Parasitology 91, 153158.CrossRefGoogle ScholarPubMed
Neteler, M. (2004). MODIS time series remote sensing for epidemiological modelling. International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences 2004.Google Scholar
Njau, B. C., Kassali, O. B., Scholtens, R. G. and Akalework, N. (1989). The ingluence of watering practices on the transmission of Fasciola among sheep in the Ethiopia highlands. Veterinary Research Communications 13, 6774.CrossRefGoogle Scholar
Oliver, M. A. (1990). Kriging: a method of interpolation for Geographical Information Systems. International Journal Of Geographical Information Systems 4, 313332.CrossRefGoogle Scholar
Roberts, J. A. and Suhardono, (1996). Approaches to the control of fasciolosis in ruminants. International Journal for Parasitology 26, 971981.CrossRefGoogle Scholar
Rojas, L., Vazquez, A., Domenech, I. and Robertson, L. J. (2010). Fascioliasis: can Cuba conquer this emerging parasitosis? Trends in Parasitology 26, 2634.CrossRefGoogle ScholarPubMed
Salimi-Bejestani, M. R., McGarry, J. W., Felstead, S., Ortiz, P., Akca, A. and Williams, D. J. (2005). Development of an antibody-detection ELISA for Fasciola hepatica and its evaluation against a commercially available test. Research in Veterinary Science 78, 177–81.CrossRefGoogle ScholarPubMed
Sanchez-Andrade, R., Paz-Silva, A., Suarez, J. L., Panadero, R., Pedreira, J., Lopez, C., Diez-Banos, P. and Morrondo, P. (2002). Influence of age and breed on natural bovine fasciolosis in an endemic area (Galicia, NW Spain). Veterinary Research Communications 26, 361–70.CrossRefGoogle Scholar
Spithill, T. W. and Dalton, L. P. (1998). Progress in development of liver fluke vaccines. Parasitology Today 14, 224228.CrossRefGoogle ScholarPubMed
Theodoropoulos, G., Theodoropoulou, E., Petrakos, G., Kantzoura, V. and Kostopoulos, J. (2002). Abattoir condemnation due to parasitic infections and its economic implications in the region of Trikala, Greece. Journal of Veterinary Medicine Series B 49, 281284.CrossRefGoogle ScholarPubMed
Tum, S., Puotinen, M. L. and Coppeman, D. B. (2004). A geographic information systems model for mapping risk of fascioliosis in cattle and buffaloes in Cambodia. Veterinary Parasitology 122, 141149.CrossRefGoogle Scholar
Turnbull, B. W., Iwano, E. J., Burnett, W. S., Howe, H. L. and Clark, L. C. (1990). Monitoring for clusters of disease: application to leukemia incidence in upstate New York. American Journal of Epidemiology 132 (Suppl.) S136S143.CrossRefGoogle ScholarPubMed
Urquhart, G. M., Armour, J., Duncan, A. M. and Jennings, F. W. (1987). Veterinary Parasitology, 2nd ed. Longman Scientific & Technical, England, 104 pp.Google Scholar
Wan, Z. and Dozier, J. (1996). A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing 34, 892905.Google Scholar
Yilma, J. M. and Malone, J. B. (1998). A geographical information system forecast model for strategic control of fasciolosis in Ethiopia. Veterinary Parasitology 78, 103127.CrossRefGoogle Scholar
Zukowski, S. H., Wilkerson, G. W. and Malone, J. B. (1993). Fasciolosis in cattle in Lousiana. II. Development of a system to use soil maps in geographic information system to estimate disease risk on Louisiana coastal marsh rangeland. Veterinary Parasitology 47, 5165.CrossRefGoogle Scholar