Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T06:16:37.077Z Has data issue: false hasContentIssue false

Anticoccidial activity of herbal complex in broiler chickens challenged with Eimeria tenella

Published online by Cambridge University Press:  24 October 2011

MUHAMMAD A. ZAMAN
Affiliation:
Department of Parasitology, University of Agriculture, Faisalabad-38040-Pakistan
ZAFAR IQBAL
Affiliation:
Department of Parasitology, University of Agriculture, Faisalabad-38040-Pakistan
RAO Z. ABBAS*
Affiliation:
Department of Parasitology, University of Agriculture, Faisalabad-38040-Pakistan Livestock Parasitology, Lethbridge Research Centre, Agriculture and Agri-Food Canada, Canada
MUHAMMAD N. KHAN
Affiliation:
Department of Parasitology, University of Agriculture, Faisalabad-38040-Pakistan
*
*Corresponding author: Department of Parasitology, University of Agriculture, Faisalabad-38040-Pakistan. Tel: +92 41 9201106. E-mail: raouaf@hotmail.com

Summary

The objective of the present study was to evaluate the anticoccidial effect of different concentrations of the herbal complex of 4 plants (leaves of Azadirachta indica and Nicotiana tabacum, flowers of Calotropis procera and seeds of Trachyspermum ammi) in broiler chickens in comparison with amprolium anticoccidial. Three concentrations (2 g, 4 g and 6 g) of herbal complex were given to the experimental groups once a day and amprolium (at the dose rate of 125 ppm) was given orally in drinking water from the 14th to the 21st days of age. One group was kept as infected, non-medicated control and one as non-infected, non-medicated control. All groups were inoculated orally with 75 000 sporulated oocysts on the 14th day of age except the non-infected, non-medicated control. Among herbal complex medicated groups, the maximum anticoccidial effect was seen in the group medicated with 6 g herbal complex followed by 4 g and 2 g herbal complex medicated groups. Treatment with 6 g of the herbal complex significantly reduced the negative performance and pathogenic effects associated with Eimeria tenella challenge at a level that was comparable with amprolium when using a largely susceptible recent field isolate. In summary, concentration-dependent anticoccidial activity of the studied herbal complex suggests its use as an alternative anticoccidial agent to chemotherapeutic drugs for Eimeria tenella control.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbas, R. Z., Iqbal, Z., Akhtar, M. S., Khan, M. N., Jabbar, A. and Sandhu, Z. D. (2006). Anticoccidial Screening of Azadirachta indica (Neem) in broilers. Pharmacologyonline 3, 365371.Google Scholar
Abbas, R. Z., Iqbal, Z., Blake, D., Khan, M. N. and Saleemi, M. K. (2011 a). Anticoccidial drug resistance in fowl coccidia: the state of play revisited. World’s Poultry Science Journal 67, 337350.CrossRefGoogle Scholar
Abbas, R. Z., Iqbal, Z., Khan, M. N., Zafar, M. A. and Zia, M. A. (2010). Anticoccidial activity of Curcuma longa L. in Broiler Chickens. Brazilian Archives of Biology and Technology 53, 6367.CrossRefGoogle Scholar
Abbas, R. Z., Iqbal, Z., Sindhu, Z. D., Khan, M. N. and Arshad, M. (2008). Identification of cross resistance and multiple resistance in Eimeria tenella field isolates to commonly used anticoccidials in Pakistan. Journal of Applied Poultry Research 17, 361368.CrossRefGoogle Scholar
Abbas, R. Z., Manzoor, Z., Munawar, S. H., Iqbal, Z., Khan, M. N., Saleemi, M. K., Zia, M. A. and Yousaf, A. (2011 c). Anticoccidial activity of hydrochloric acid (HCl) against Eimeria tenella in broiler chickens. Pesquisa Veterinária Brasileira 31, 425429.CrossRefGoogle Scholar
Abbas, R. Z., Munawar, S. H., Manzoor, Z., Iqbal, Z., Khan, M. N., Saleemi, M. K., Zia, M. A. and Yousaf, A. (2011 b). Anticoccidial effects of acetic acid on performance and pathogenic parameters in broiler chickens challenged with Eimeria tenella. Pesquisa Veterinária Brasileira 31, 99103.CrossRefGoogle Scholar
Adjanohoun, E. J., Cusset, G., Waechter, P., Le, I., Keita, A., Le, B. M. and Lejoly, J. (1989). Banque de données de médecine traditionnelle et pharmacopée (PHARMEL). ACCT (Agence de Coopération Culturelle et technique). Paris, France.Google Scholar
Aeschbach, R., Loliger, J., Scott, B. C., Murica, A., Butler, J., Halliwell, B. and Aruoma, O. I. (1994). Antioxidant actions of thymol, carvacol, 6-gingerol, zingerone and hudroxytyroslo. Food Chemistry and Toxicology 32, 3136.CrossRefGoogle Scholar
Ak´e Assi, Y. A. (1992). Contribution au recensement des esp`eces v´eg´etales utilis´ees traditionnellement sur le plan zootechnique et v´et´erinaire en Afrique de l'Ouest. Ph.D. Thesis, Universit´e Claude-Bernard Lyon I, France.Google Scholar
Al-Rajhy, D. H., Alahmed, A. M., Hussein, H. I. and Kheir, S. M. (2003). Acaricidal effects of cardiac glycosides, azadirachtin and neem oil against the camel tick, Hyalomma dromedarii (Acari: Ixodidae). Pest Managment Science 59, 12501254.CrossRefGoogle ScholarPubMed
Amaral, J. A., Ekins, A., Richards, S. R. and Knowles, R. (1998). Effect of selected monoterpenes on methane oxidation, denitrification, and aerobic metabolism by bacteria in pure culture. Applied Environmental Microbiology 64, 520525.CrossRefGoogle ScholarPubMed
Awais, M. M., Akhtar, M., Muhammad, F., Haq, A. U. and Anwar, M. I. (2011). Immunotherapeutic effects of some sugar cane (Saccharum officinarum L.) extracts against coccidiosis in industrial broiler chickens. Experimental Parasitology 128, 104110.CrossRefGoogle ScholarPubMed
Ayaz, M., Akhtar, M., Hayat, C. S., Hafeez, M. A. and Haq, A. (2003). Prevalence of coccidiosis in broiler chickens in Faisalabad, Pakistan. Pakistan Veterinary Journal 23, 5152.Google Scholar
Barre, J. T., Bowden, B. F., Coll, J. C., Jesus, J., Fuente, V. E., Janairo, G. C. and Ragasa, C. Y. (1997). A bioactive triterpene from Lantana camara. Phytochemistry 45, 321324.CrossRefGoogle ScholarPubMed
Biu, A. A., Yusuf, S. D. and Rabo, J. S. (2006). Use of neem (Azadirachta indica) aqueous extract as a treatment for poultry coccidiosis in Borno State, Nigeria. African Scientist 7, 147153.Google Scholar
Bowman, W. C. and Rand, M. J. (1980). Textbook of Pharmacology. Blackwell Scientific Publications, Oxford, UK.Google Scholar
Christaki, E., Florou-Paneri, P., Giannenea, I., Papzahariadou, M., Botsoglou, N. A. and Spais, A. S. B. (2004). Effect of a mixture of herbal extracts on broiler chickens infected with Eimeria tenella. Animal Research 53, 137144.CrossRefGoogle Scholar
Cook, G. C. (1988). Small intestinal coccidiosis: An emergent clinical problem. Journal of Infection 16, 213219.CrossRefGoogle ScholarPubMed
Costa, C. T. C., Bevilaqua, C. M. L., Camurça-Vasconcelos, A. L. F., Maciel, M. V., Morais, S. M., Castro, C. M. S., Braga, R. R. and Oliveira, L. M. B. (2008). In vitro ovicidal and larvicidal activity of Azadirachta indica extracts on Haemonchus contortus. Small Ruminant Research 74, 284287.CrossRefGoogle Scholar
Crespy, V. and Williamson, G. (2004). A review of the health effects of green tea catechins in in vivo animal models. Journal of Nutrition 134, 3431S3440S.CrossRefGoogle ScholarPubMed
Dalloul, R. A. and Lillehoj, H. S. (2006). Poultry coccidiosis: Recent advancements in control measures and vaccine development. Expert Review of Vaccines 5, 143163.CrossRefGoogle ScholarPubMed
Dhar, D. N. and Singh, R. K. (1973). The chemistry of Calotropis procera. The Eastern Pharmacist 176, 99101.Google Scholar
Duffy, C. F., Mathis, G. F. and Power, R. F. (2005). Effects of Natustat™ supplementation on performance, feed efficiency and intestinal lesion scores in broiler chickens challenged with Eimeria acervulina, Eimeria maxima and Eimeria tenella. Veterinary Parasitology 130, 185190.CrossRefGoogle ScholarPubMed
Finlay, R. C., Roberts, S. J. and Hayday, A. C. (1993). Dynamic response of murine gut intraepithelial T cells after infection by the coccidian parasite Eimeria. European Journal of Immunology 23, 25572564.Google Scholar
Fujiki, H. (2005). Green tea: health benefits as cancer preventive for humans. The Chemical Record 5, 119132.CrossRefGoogle ScholarPubMed
Haslam, E. (1996). Natural polyphenols (vegetable tannins) as drugs: possible modes of action. Journal of Natural Products 59, 205215.CrossRefGoogle ScholarPubMed
Hilbrich, P. (1978). Krankheiten des Geflugels unter besondered Berucksichigigung der Haltung und Futterung. Hermann Kuhn KG, Schwenningen am Neckar, Germany.Google Scholar
Hopp, K. H., Cunningham, L. V., Bromel, M. C., Schermeister, L. J. and Wahba Khalil, S. K. (1976). In vitro antitrypanosomal activity of certain alkaloids against Trypanosoma lewisi. Lloydia 39, 375377.Google ScholarPubMed
Iqbal, Z., Jabbar, A., Akhtar, M. S., Muhammad, G. and Lateef, M. (2005). Possible role of ethno- veterinary medicine in poverty reduction in Pakistan: Use of botanical anthelmintics as an example. Journal of Agriculture and Social Sciences 1, 187195.Google Scholar
Iqbal, Z., Lateef, M., Jabbar, A., Ghayur, M. N. and Gilani, A. H. (2006). In vitro and In vivo anthelmintic activity of Nicotiana tabacum L. Leaves against gastrointestinal nematodes of sheep. Phytotherapy Research 20, 4648.CrossRefGoogle ScholarPubMed
Iqbal, Z., Lateef, M., Jabbar, A. and Gilani, A. H. (2010). In vivo anthelmintic activity of Azadirachta indica A. Juss seeds against gastrointestinal nematodes of sheep. Veterinary Parasitology 168, 342345.CrossRefGoogle ScholarPubMed
Isogai, E., Isogai, H., Hirose, K., Hayashi, S. and Oguma, K. (2001). In vivo synergy between green tea extract and levofloxacin against enterohemorrhagic Escherichia coli O157 infection. Current Microbiology 42, 248251.CrossRefGoogle ScholarPubMed
Johnson, J. and Reid, W. M. (1970). Anticoccidial drugs: lesion scoring techniques in battery and floor pen experiments with chickens. Experimental Parasitology 28, 3036.CrossRefGoogle ScholarPubMed
Jones, G. A., McAllister, T. A., Muir, A. D. and Cheng, K. J. (1994). Effects of sainfoin (Onobrychis viciifolia scop.) condensed tannins on growth and proteolysis by four strains of ruminal bacteria. Applied Environmental Microbiology 60, 13741378.CrossRefGoogle ScholarPubMed
Khajeh, M., Yamini, Y., Fatemeh, S. and Bahramifar, N. (2004). Comparison of essential oil composition of Carum copticum obtained by supercritical carbon dioxide extraction and hydrodistillation methods. Food Chemistry 86, 587591.CrossRefGoogle Scholar
Kilonzo, B. S., Ngomuo, A. J., Sabuni, C. A. and Mgode, G. F. (2001). Effects of Azadirachta indica (Neem) extract on livestock fleas in Morogoro District, Tanzania. Insect Science and its Application 21, 8992.Google Scholar
Lateef, M., Iqbal, Z., Akhtar, M. S., Jabbar, A., Khan, M. N. and Gilani, A. H. (2006). Preliminary screening of Trachyspermum ammi (L.) seed for anthelmintic activity in sheep. Tropical Animal Health and Production 38, 491496.CrossRefGoogle ScholarPubMed
Laurent, F., Mancassola, R., Lacroix, S., Menezes, R. and Naciri, M. (2001). Analaysis of chicken mucosal immune response to Eimeria tenella and Eimeria maxima infection by quantitative reverse transcription-PCR. Infection and Immunity 69, 25272534.CrossRefGoogle Scholar
MAFF. (1986). Parasitological Laboratory Techniques. Technical Bulletin no.18, Manual of Veterinary, Her Majestey's Stationary Office, Ministry of Agriculture, Fisheries and Food, London, UK.Google Scholar
Mason, T. L. and Wasserman, B. P. (1987). Inactivation of red beet betaglucan synthase by native and oxidized phenolic compounds. Phytochemistry 26, 21972202.CrossRefGoogle Scholar
McAllister, T. A., Wang, Y., Hristov, A. N., Olson, M. E. and Cheeke, P. R. (1998). Applications of Yucca schidigera in livestock production. Proceedings of the 33rd Pacific Northwest Animal Nutrition Conference, Canada, pp. 109119.Google Scholar
Molan, A. L., Meagher, L. P., Spencer, P. A. and Sivakumaran, S. (2003). Effect of flavan-3-ols on in vitro egg hatching, larval development and viability of infective larvae of Trichostrongylus colubriformis. International Journal for Parasitology 33, 16911698.CrossRefGoogle ScholarPubMed
Molan, A. L., Sivakumaran, S., Spencer, P. A. and Meagher, L. P. (2004). Green tea flavan-3-ols and oligomeric proanthocyanidins inhibit the motility of infective larvae of Teladorsagia circumcincta and Trichostrongylus colubriformis in vitro. Research in Veterinary Science 77, 239243.CrossRefGoogle ScholarPubMed
Montes-Belmont, R. and Carvajal, M. (1998). Control of Aspergillus flavus in maize with plant essential oils and their components. Journal of Food Protection 61, 616619.CrossRefGoogle ScholarPubMed
Mossa, J. S., Tariq, M., Mohsin, A., Ageel, A. M., Al-Yahya, M. A., Al-Said, M. S. and Rafatullah, S. (1991). Pharmacological studies on aerial parts of Calotropis procera. American Journal of Chinese Medicine 19, 223231.CrossRefGoogle ScholarPubMed
Nagalakshmi, S., Shankaracharya, N. B., Naik, J. P. and Rao, L. J. M. (2000). Studies on chemical and technological aspects of ajowan (Trachyspermum ammi (L.) Syn. Carum copticum Hiern) seeds. Journal of Food Science and Technology 37, 277281.Google Scholar
National Research Council (1992) Neem: a Tree for Solving Global Problems. National Academy Press, Washington D.C.Google Scholar
Nogueira, V. A., Franca, T. N. and Peixoto, P. V. (2009). Ionophore poisoning in animals. Pesquisa Veterinária Brasileira 29, 191197.CrossRefGoogle Scholar
Ogaard, B., Larsson, E., Glans, R., Henriksson, T. and Birkhed, D. (1997). Antimicrobial effect of a chlorhexidine-thymol varnish (cervitec) in orthodontic patients. A prospective, randomized clinical trial. Journal of Orofacial Orthopedics 58, 206213.Google ScholarPubMed
Omulokoli, E., Khan, B. and Chhabra, S. C. (1997). Antiplasmodial activity of four Kenyan medicinal plants. Journal of Ethnopharmacology 56, 133137.CrossRefGoogle ScholarPubMed
Pandey, N., Chandrakar, A. K., Garg, M. L. and Patel, S. S. (2009). Calotropris procera-induced keratitis. Indian Journal of Ophthalmology 57, 5860.CrossRefGoogle Scholar
Phillipson, J. D. and O'Neill, M. J. (1987). New leads to the treatment of protozoal infections based on natural product molecules. Acta Pharmaceutica Nordica 1, 131144.Google Scholar
Rosell, G., Quero, C., Coll, J. and Guerrero, A. (2008). Biorational insecticides in pest management. Journal of Pest Sciences 33, 103121.Google Scholar
Saima, M. Z. U., Jabbar, M. A., Mehmud, A., Abbas, M. M. and Mahmood, A. (2010). Effect of lysine supplementation in low protein diets on the performance of growing broilers. Pakistan Veterinary Journal 30, 1720.Google Scholar
Seiber, J. N., Nelson, C. J. and Lee, S. M. (1982). Cardenolides in the latex and leaves of seven Asclepias species and Calotropis procera. Phytochemistry 21, 23432348.CrossRefGoogle Scholar
Sen, S., Sahu, N. P. and Mahato, S. B. (1992). Flavonol glycosides from Calotropis gigantea. Phytochemistry 31, 29192921.CrossRefGoogle ScholarPubMed
Sharma, P. and Sharma, J. D. (1999). Evaluation of in vitro schizontocidal activity of plant parts of Calotropis procera – an ethnobotanical approach. Journal of Ethnopharmacology 68, 8395.CrossRefGoogle ScholarPubMed
Shirley, M. W. (1986). New methods for the identification of species and strains of Eimeria. In Research in Avian Coccidiosis. (ed. McDougald, L. R., Long, P. L. and Joyner, L. P.), pp. 1335. University of Georgia, Athens, GA, USA.Google Scholar
Singh, B. and Rastogi, R. P. (1972). Structure of asclepin and some observations on the NMR spectra of Calotropis glycosides. Phytochemistry 11, 757762.CrossRefGoogle Scholar
Stern, J. L., Hagerman, A. E., Steinberg, P. D. and Mason, P. K. (1996). Phlorotannin-protein interactions. Journal of Chemical Ecology 22, 18871899.CrossRefGoogle ScholarPubMed
Sundaram, K. M. S. and Sloane, L. (1995). Effects of pure and formulated azadirachtin, a neem-based biopesticide, on the phytophagous spider mite, Tetranychus urticae Koch. Journal of Environmental Science and Health 30, 801814.CrossRefGoogle Scholar
Tipu, M. A., Pasha, T. N. and Ali, Z. (2002). Comparative efficacy of salinomycin sodium and neem fruit (Azadirachta indica) as feed additive anticoccidials in broilers. International Journal of Poultry Sciences 1, 9193.Google Scholar
Toulah, F. H., Ismeel, H. A. and Khan, S. (2010). Effect of treatment with Neem (Azadirachta indica) compared with Baycox drug on the caecum of chicken experimentally infected with Eimeria tenella. Journal of the Egyptian Society of Parasitology 40, 93106.Google ScholarPubMed
Tsuchiya, H., Sato, M., Miyazaki, T., Fujiwara, S., Tanigaki, S., Ohyama, M., Tanaka, T. and Iinuma, M. (1996). Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. Journal of Ethnopharmacology 50, 2734.CrossRefGoogle ScholarPubMed
Wang, Y., McAllister, T. A., Newbold, C. J., Rode, L. M., Cheeke, P. R. and Cheng, K. J. (1998). Effects of Yucca schidigera extract on fermentation and degradation of steroidal saponins in the rumen simulation technique (RUSITEC). Animal Feed Science and Technolnology 74, 143153.CrossRefGoogle Scholar
Weber, J. M., Ruzindana-Umunyana, A., Imbeault, L. and Sircar, S. (2003). Inhibition of adenovirus infection and adenain by green tea catechins. Antiviral Research 58, 167173.CrossRefGoogle ScholarPubMed
Worku, M., Franco, R. and Miller, J. H. (2009). Evaluation of the Activity of Plant Extracts in Boer Goats. American Journal of Animal and Veterinary Sciences 4, 7279.Google Scholar
Ya, C., Gaffney, S. H., Lilley, T. H. and Haslam, E. (1988). Carbohydratepolyphenol complexation. In Chemistry and Significance of Condensed Tannins (ed. Hemingway, S. R. W. and Karchesy, J. J.), pp. 553. Plenum Press, New York, USA.Google Scholar
Youn, H. J., Kang, Y. B. and Jang, D. H. (1993). Effects of g-irradiation from cobalt-60 on pathogenicity of Eimeria tenella. Korean Journal of Veterinary Research 33, 649655.Google Scholar