Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-18T18:40:57.341Z Has data issue: false hasContentIssue false

Respiratory Pattern Changes in Sleep in Children on Vagal Nerve Stimulation for Refractory Epilepsy

Published online by Cambridge University Press:  02 December 2014

Lakshmi Nagarajan
Affiliation:
Princess Margaret Hospital for Children, UWA and Curtin University, Perth, Australia
Peter Walsh
Affiliation:
Princess Margaret Hospital for Children, UWA and Curtin University, Perth, Australia
Pauline Gregory
Affiliation:
Princess Margaret Hospital for Children, UWA and Curtin University, Perth, Australia
Stephen Stick
Affiliation:
Princess Margaret Hospital for Children, UWA and Curtin University, Perth, Australia
Jennifer Maul
Affiliation:
Princess Margaret Hospital for Children, UWA and Curtin University, Perth, Australia
Soumya Ghosh
Affiliation:
Centre for Neuromuscular and Neurological Disorders, UWA and Curtin University, Perth, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

An altered breathing pattern in sleep, over two to three weeks, reported by the parents of a child on Vagal Nerve Stimulation (VNS) therapy for refractory epilepsy, prompted a sleep study in him. His polysomnography (PSG) revealed respiratory irregularity concordant with VNS activation. Dyspnoea is a well recognised and reported side effect of the VNS. However there are only a few studies looking at respiration in sleep with VNS. We therefore undertook PSGs in seven other children on VNS.

Methods:

Sleep studies were undertaken, in accordance with standard clinical practice. Sleep and apnoeas and hypopneas were scored in accordance with conventional criteria. Respiratory pattern changes in sleep (RPCS) with VNS were looked for.

Results:

Respiratory pattern changes in sleep were seen during PSG in seven of eight children on VNS for refractory epilepsy. Decreased effort and tidal volume occurred in seven children, concordant with VNS activation. In one child, this was associated with a fall in respiratory rate, in the other six children with an increase. No study showed an apnoea/hypopnoea index in the abnormal range. The RPCS were not associated with significant hypoxia or hypercapnoea.

Conclusion:

Our results suggest that RPCS occur in most children with VNS. This is not surprising in view of the significant influence vagal afferents have on respiratory control centres. The RPCS did not appear to have a clinical impact in our group. However further investigations are suggested to explore this phenomenon, especially in patients with sleep apnoea syndromes or compromised respiratory function.

Résumé:

RÉSUMÉ:Introduction:

Une altération du pattern respiratoire pendant le sommeil sur une période de deux à trois semaines, notée par les parents d’un enfant sous stimulation du nerf vague (SNV) pour une épilepsie réfractaire, a motivé une étude du sommeil chez l’enfant. Son enregistrement polysomnographique (PSG) a montré des irrégularités respiratoires concordant avec la SNV. La dyspnée est un effet secondaire bien connu de la SNV. Cependant, il existe peu d’études sur la respiration pendant le sommeil sous SNV. Nous avons donc procédé à un enregistrement PSG chez sept autres enfants sous SNV.

Méthodes:

Les études du sommeil ont été réalisées selon les normes en pratique clinique. Le sommeil, les apnées et les hypopnées ont été évalués selon les critères conventionnels. Les changements du pattern respiratoire pendant le sommeil (CPRS) sous SNV ont été recherchés.

Résultats:

Des CPRS ont été observés pendant la PSG chez sept des huit enfants sous SNV pour épilepsie réfractaire. Une diminution de l’effort et du volume courant concordant avec la SNV a été observée chez sept enfants. Chez un enfant ceci était associé à une baisse de la fréquence respiratoire et chez les six autres à une augmentation. Aucune étude n’a montré un index apnée/hypopnée anormal. Les CPRS n’étaient pas associés à une hypoxie ou à une hypercapnie significative.

Conclusions:

Nos résultats suggèrent que des CPRS surviennent chez la plupart des enfants sous SNV, ce qui n’est pas étonnant considérant l’influence significative des afférents du nerf vague sur le contrôle des centres respiratoires. Les CPRS ne semblaient pas avoir un impact clinique chez nos patients. Il est indiqué d’explorer ce phénomène, surtout chez les patients qui présentent des syndromes d’apnée du sommeil ou une fonction respiratoire compromise.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological 2003

References

1. McLachlan, RS. Vagus nerve stimulation for intractable epilepsy: areview. J Clin Neurophysiol 1997;14(5):358368.Google Scholar
2. Schachter, SC, Saper, CB. Progress in epilepsy research, vagus Nervestimulation. Epilepsia 1998;39(7):677686.Google Scholar
3. Binnie, CD. Vagus nerve stimulation for epilepsy: a review. Seizure 2000;9:161169.Google Scholar
4. Labar, D. Vagus nerve stimulation for intractable epilepsy inchildren. Dev Med Child Neurol 2000;42:496499.Google Scholar
5. Valencia, I, Holder, D, Helmers, S, et al. Vagus nerve stimulation inpediatric epilepsy: a review. Pediatr Neurol 2001:25:5;368376.Google Scholar
6. Nagarajan, L, Walsh, P, Gregory, P, et al. VNS therapy in clinicalpractice in children with refractory epilepsy. Acta Neurol Scand 2002;105:1317.Google Scholar
7. Marcus, CL, et al. Normal polysomnographic values for children andadolescents. Am Rev Respir Dis 1992;146(5 Pt 1):12351239.Google Scholar
8. The Atlas Task Force, EEG arousals: scoring rules and examples. Sleep 1992;15(2):173183.Google Scholar
9. Banzett, RB, Guz, A, Padarafar, D, et al. Cardiorespiratory variablesand sensation during stimulation of the left vagus in patients with epilepsy. Epilepsy Res 1999;35:111.Google Scholar
10. Malow, BA, Edwards, J, Marzed, M et al. Effects of vagus nervestimulation on respiration during sleep. Neurology 2000;55:14511454.Google Scholar
11. Murray, JM, Matheson, JK, Scammell, TE. Effects of vagus nervestimulation on respiration during sleep. Neurology 2001;57:1523.CrossRefGoogle Scholar
12. Remmers, JE. Central Neural Control of Breathing. In: Atose, M, Kawakami, Y (Eds). Control of Breathing in Health and Disease Vol. 135. New York: Marcel Dekker, Inc. 1999:135.Google Scholar
13. Khoo, MC. Determinants of ventilatory instability and variability. Respir Physiol 2000;122(2–3):167182.CrossRefGoogle ScholarPubMed
14. Burton, MD, Kazemi, H. Neurotransmitters in central respiratorycontrol. Respir Physiol 2000;122(2–3):111121.Google Scholar
15. Lagercrantz, H. Classical and “new” neurotransmitters duringdevelopment – some examples from control of respiration. J DevPhysiol 1984:6(3);195205.Google Scholar
16. Henry, TR. Anatomical, experimental, and mechanisticinvestigations. In: Schachter, SC, Schmidt, D (Eds). Vagus Nerve Stimulation, London: Martin Dunitz Limited, 2001;130.Google Scholar
17. Nattie, E. Multiple sites for central chemoreception: their roles inresponse sensitivity and in sleep and wakefulness. Respir Physiol 2000;122(2–3):223235.Google Scholar
18. Remmers, JE. Sleeping and breathing. Chest Mar 1990;97(3):77S- 80S.Google Scholar
19. Hamans, E, Boudewyns, A, De Backer, W, et al. Sleep relatedbreathing disorders: the respiratory control system and its instability during sleep. Acta Otorhinolaryngol Belg 1995;49(1):4551.Google Scholar
20. Malow, BA, Levy, K, Maturen, K, et al. Obstructive apnoeas iscommon in medically refractory epilepsy. Neurology 2000;55:10021007.Google Scholar