Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T20:40:34.175Z Has data issue: false hasContentIssue false

Motor and Occipital Cortex Excitability in Migraine Patients

Published online by Cambridge University Press:  02 December 2014

Sefer Gunaydin
Affiliation:
Neurology Department, Bakirkoy State Hospital for Psychiatric and Neurological Diseases, Bakirkoy, Istanbul, Turkey
Aysun Soysal*
Affiliation:
Neurology Department, Bakirkoy State Hospital for Psychiatric and Neurological Diseases, Bakirkoy, Istanbul, Turkey
Turan Atay
Affiliation:
Neurology Department, Bakirkoy State Hospital for Psychiatric and Neurological Diseases, Bakirkoy, Istanbul, Turkey
Baki Arpaci
Affiliation:
Neurology Department, Bakirkoy State Hospital for Psychiatric and Neurological Diseases, Bakirkoy, Istanbul, Turkey
*
Atakoy 5. Kisim E1/1A Blok Daire: 8 34158 Bakirkoy/Istanbul, Turkey
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

We evaluated motor and occipital cortex excitability in migraine patients using transcranial magnetic stimulation.

Methods:

In this study, we included 15 migraine patients with aura (MwA), 15 patients without aura (MwoA) between attacks, and 31 normal healthy controls. Motor thresholds at rest, amplitudes of motor evoked potentials, central motor conduction time and cortical silent period were measured by stimulation of the motor cortex by using 13.5 cm circular coil and recording from abductor digiti minimi muscle. Additionally, phosphene production and the threshold of phosphene production was determined by stimulation of the visual cortex with the same coil.

Results:

No significant differences were observed between the groups with respect to the motor thresholds, Motor evoked potential max/compound muscle action potential max (MEPmax/Mmax) amplitudes, central motor conduction times and duration of cortical silent period. Although not statistically significant, the proportion of the migraineurs with phosphene generation (90%) was found to be higher than that of normal controls (71%). Phosphene threshold levels in migraine patients, however, were significantly lower than those of the controls with MwA patients having the lowest levels.

Conclusion:

Our findings indicate that the occipital cortex, but not the motor cortex, is hyperexcitable in migraine patients.

Résumé

RÉSUMÉObjectif:

Nous avons évalué par stimulation magnétique transcrânienne l'excitabilité du cortex moteur et du cortex occipital chez des patients migraineux.

Méthodes:

Nous avons étudié entre les crises 15 patients ayant une migraine avec aura (MaA), 15 patients migraineux sans aura (MsA) et 31 témoins en bonne santé. Les seuils moteurs au repos, les amplitudes des potentiels évoqués moteurs (PÉM), le temps de conduction moteur central et la période de silence cortical ont été mesurés par stimulation du cortex moteur au moyen d'une spirale circulaire de 13,5 cm et enregistrement au niveau du muscle abducteur du petit doigt. De plus, la production de phosphènes et le seuil de production de phosphènes ont été déterminés par stimulation du cortex visuel avec la même spirale.

Résultats:

Nous n'avons observé aucune différence significative entre les groupes quant aux seuils moteurs, aux amplitudes PÉMmax/Mmax, aux temps de conduction motrice centrale et à la durée des périodes de silence cortical. Bien que ce ne soit pas significatif au point de vue statistique, la proportion de migraineux qui ont eu des phosphènes (90%) était plus élevée que celle des témoins normaux (71%). Le niveau seuil de phosphènes chez les migraineux était cependant significativement plus bas que celui des témoins et les MaA avaient le seuil le plus bas.

Conclusion:

Nos observations indiquent que le cortex occipital est hyperexcitable chez les migraineux, mais que le cortex moteur ne l'est pas.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2006

References

1. Betucci, D, Cantello, R, Gianelli, M, Naldi, P, Mutani, R. Menstrüelmigraine without aura: cortical excitability to magnetic stimulation. Headache. 1992; 32: 3457.Google Scholar
2. Maertens de Noordhout, A, Pepin, JL, Schoenen, J, Delwaide, PJ. Percutaneous magnetic stimulation of the motor cortex in migraine. Electroencephalogr Clin Neurophysiol. 1992; 85: 1105.Google Scholar
3. van der Kamp, W, Maassen VanDenBrink, A, Ferrari, MD, van Dijk, JG. Interictal cortical hyperexcitability in migraine patients demonstrated with transcranial magnetic stimulation. J Neurol Sci. 1996; 139: 10610.CrossRefGoogle ScholarPubMed
4. van der Kamp, W, Maassen Van Den Brink, A, Ferrari, MD, van Dijk, JG. Interictal cortical excitability to magnetic stimulation in familial hemiplegic migraine. Neurology. 1997; 48: 14624.Google Scholar
5. Afra, J, Mascia, A, Gerard, P, de Noordhout, MA, Schoenen, J. Interictal cortical excitability in migraine: a study using transcranial magnetic stimulation of motor and visual cortices. Ann Neurol. 1998; 44: 20915.Google Scholar
6. Aurora, SK, Welch, KMA. Brain excitability in migraine: evidencefrom transcranial magnetic stimulation studies. Curr Opin Neurol. 1998; 11: 2059.Google Scholar
7. Aurora, SK, Ahmad, BK, Welch, KMA, Bhardwaj, P, Ramadan, NM. Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology. 1998; 50: 11114.Google Scholar
8. Aurora, SK, Al-Sayeed, F, Welch, KMA. The cortical silent period isshortened in migraine with aura. Cephalalgia. 1999; 19: 70812.Google Scholar
9. Aurora, SK, Cao, Y, Bowyer, SM, Welch, KMA. The occipital cortex ishyperexcitable in migraine: experimental evidence. Headache 1999; 39: 46976.Google Scholar
10. Werhahn, KJ, Wisenen, K, Herzog, J, et al. Motor cortex excitability inpatients with migraine with aura and hemiplegic migraine. Cephalalgia. 2000; 20: 4550.Google Scholar
11. Mulleners, WM, Chronicle, EP, Palmer, JE, Koehler, PJ, Vredeveld, JW. Visual cortex excitability in migraine with and without aura. Headache. 2001;41: 56572.Google Scholar
12. Mulleners, WM, Chronicle, EP, Palmer, JE, Koehler, PJ, Vredeveld, JW. Supression of perception in migraine: evidence for reduced inhibition in the visual cortex. Neurology. 2001; 56: 17883.Google Scholar
13. Battelli, L, Black, KR, Wray, SH. Transcranial magnetic stimulation ofvisual area V5 in migraine. Neurology. 2002; 58: 10669.Google Scholar
14. Brighina, F, Piazza, A, Daniele, O, Fierro, B. Modulation of visualcortical excitability in migraine with aura: effects of 1 Hz repetetive transcranial magnetic stimulation. Exp Brain Res. 2002; 145 : 17781.Google Scholar
15. Mulleners, WM, Chronicle, EP, Vredeveld, JW, Koehler, PJ. Visualcortex excitability in migraine before and after valproate prophylaxis: a pilot study using TMS. Eur J Neurol. 2002; 9: 3540.Google Scholar
16. Ozturk, V, Cakmur, R, Donmez, B, et al. Comparison of corticalexcitability in chronic migraine (transformed migraine) and migraine without aura. J Neurol. 2002; 249: 126871.Google Scholar
17. Ambrosini, A, de Noordhout, AM, Sandor, PS,Schoenen, J. Electrophysiological studies in migraine: a comprehensive review of their interest and limitations. Cephalalgia. 2003; 23 Suppl 1: 1331.Google Scholar
18. Aurora, SK, Welch, KMA, Al-Sayeed, F. The threshold for phosphenesis lower in migraine. Cephalalgia. 2003; 23: 25863.Google Scholar
19. Fierro, B, Ricci, R, Piazza, A, et al. 1 Hz rTMS enhances extrastriatecortex activity in migraine: evidence of a reduced inhibition? Neurology. 2003; 61: 14468.Google Scholar
20. Fumal, A, Bohotin, V, Vandenheede, M, Schoenen, J. Transcranialmagnetic stimulation in migraine: a review of facts and controversies. Acta Neurol Belg. 2003; 103: 14454.Google Scholar
21. Rossini, PM. The anatomic and physiologic bases of motor evokedpotentials. In: Gilmore, R, editor. Neurologic clinics: evoked potentials. Philadelphia: W.B. Saunders Company; 1988. p. 75169.Google Scholar
22. Kimura, J. Somatosensory and motor evoked potentials. In: Kimura, J ,editor. Electrodiagnosis in diseases of nerve and muscle: principles and practice. Philadelphia: F.A. Davis Company; 1989.p. 375426.Google Scholar
23. Murray, NMF. Motor evoked potentials. In: Aminoff, MJ, editor. Electrodiagnosis in clinical neurology. New York: ChurchillLivingstone; 1992. p. 60526.Google Scholar
24. Cros, D, Chiappa, KH. Motor evoked potentials. In: Chiappa, KH, editor. Evoked potentials in clinical medicine. Philadelphia:Lippincott-Raven Publishers; 1997. p. 477507.Google Scholar
25. Robinson, LR. Magnetic stimulation of the central and peripheralnervous systems. In: Dumitri, D, Amato, AA, Zwarts, MJ, editors. Electrodiagnostic medicine. Philadelphia: Hanley & Belfus, inc;2002. p. 41527. Google Scholar
26. Headache Classification Committee of the International HeadacheSociety. Classification and diagnostic criteria for headache disorders, cranial neuralgies and facial pain. Cephalalgia. 1988; 8 Suppl 7: 196.Google Scholar
27. Ramadan, NM, Halvarson, H, Vande-Linde, A, et al. Low brainmagnesium in migraine. Headache. 1989; 29: 5903.CrossRefGoogle ScholarPubMed
28. Gallai, V, Sarchielli, P, Coata, G, et al. Serum and salivary magnesiumlevels in migraine. Results in a group of juvenile patients. Headache. 1992; 32: 1325.CrossRefGoogle Scholar
29. Mauskop, A, Altura, BT, Cracco, RQ, Altura, BM. Deficiency in serumionized magnesium but not total magnesium in patients with migraines. Possible role of ICa2+/IMg2+ ratio. Headache. 1993;33: 1358.Google Scholar
30. Aloisi, P, Marrelli, A, Porto, C, Tozzi, E, Cerone, G. Visual evokedpotentials and serum magnesium levels in juvenile migraine patients. Headache. 1997; 37: 3835.Google Scholar
31. Silberstein, SD, Lipton, RB, Dalessio, DJ. The pathophysiology ofprimary headache. In: Silberstein, SD, Lipton, RB, Dalessio, DJ, editors. Headache in clinical practice. Oxford: ISIS Medical Media; 1998. p. 4158.Google Scholar
32. Swanson, JW, Dodick, DW, Capobianco, DJ. Headache and othercraniofacial pain. In: Bradley, WG, Daroff, RB, Fenichel, GM, Marsden, CD, editors. Neurology in clinical practice. Vol 2. Boston: Butterworth-Heinemann; 2000. p. 182978.Google Scholar
33. Ferrari, MD, Haan, J. Genetics of headache. In: Silberstein, SD, Lipton, RB, Dalessio, DJ, editors. Wolff's headeache and other head pain. Oxford: Oxford University Press; 2001. p. 7384.Google Scholar
34. Boroojerdi, B, Prager, A, Muellbacher, W, Cohen, L.G. Reduction ofhuman visual cortex excitability using 1 Hz. transcranial magnetic stimulation. Neurology. 2000; 54: 152931.Google Scholar
35. Bohotin, V, Fumal, A, Vandenheede, M, Bohotin, C, Schoenen, J. Excitability of visual V1-V2 and motor cortices to single transcranial magnetic stimuli in migraine: a reappraisal using afigure-of-eight coil. Cephalalgia. 2003; 23: 26470.Google Scholar
36. Aurora, SK, Welch, KMA. Phosphene generation in migraine (letter).Ann Neurol. 1999; 45: 4167.3.0.CO;2-R>CrossRefGoogle Scholar