Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T21:03:54.277Z Has data issue: false hasContentIssue false

Acute Anterior Circulation Stroke: Recanalization Using Clot Angioplasty

Published online by Cambridge University Press:  02 December 2014

Cheemun Lum*
Affiliation:
Department of Diagnostic Imaging-Neuroradiology Section, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
Peter K. Stys
Affiliation:
Department of Medicine-Division of Neurology, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
Matthew J. Hogan
Affiliation:
Department of Medicine-Division of Neurology, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
Thanh B. Nguyen
Affiliation:
Department of Diagnostic Imaging-Neuroradiology Section, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
Ashok Srinivasan
Affiliation:
Department of Diagnostic Imaging-Neuroradiology Section, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
Mayank Goyal
Affiliation:
Department of Diagnostic Imaging-Neuroradiology Section, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
*
Department of Diagnostic Imaging, The Ottawa Hospital-Civic Campus, 1053 Carling Avenue, Ottawa, Ontario, Canada
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background and Purpose:

Different strategies have been employed to recanalize acutely occluded middle cerebral and internal carotid arteries (ICA) in the setting of acute stroke including intravenous and intra-arterial tPA. However, pharmaceutical thrombolysis alone, may not be effective in patients with a large amount of clot volume (complete M1, terminal internal carotid artery). We report our initial experience with endovascular clot disruption using a soft silicone balloon in addition to intravenous or intraarterial thrombolysis with tPA.

Methods:

This is a retrospective review of nine patients with symptoms of acute stroke from clot in the middle cerebral or internal carotid territories who were treated with intracranial balloon angioplasty. All patients presented with symptoms of acute anterior circulation stroke less than six hours from onset. Patients in whom computed tomography (CT) angiography confirmed the presence of large vessel clot (terminal ICA, M1 or proximal M2) were included in the study. A CT perfusion was performed providing maps of cerebral blood volume, flow and mean transit time. If the patient presented less than three hours from onset then intravenous tissue plasminogen activator (tPA) was also administered. Intra-arterial tPA was delivered into the clot. If the volume of clot was judged to be significant by the treating neurointerventionist, then a limited trial of tPA was administered intraarterially followed by balloon angioplasty of persistant clot. The time from imaging to vessel recanalization was recorded. Clinical outcomes were assessed using the modified Rankin scale and Barthel Index.

Results:

Diagnostic CT perfusion studies were performed in 7 (78%), all of which showed a significant amount of salvageable tissue as judged by the treating neurointerventionist and neurologist. Recanalization (TIMI 2 or 3) was possible in 8 (89%). There were no cases of symptomatic intracranial hemorrhage and 2 (22%) asymptomatic hemorrhages. The average time from performance of the initial emergency CT to vessel recanalization was 2.1 hours with mean time from symptom onset to vessel recanalization of 4.1 hours. Five (56%) patients had good outcomes, 1 (11%) had mild and 3 (33%) had moderate to severe disability.

Conclusion:

Clot angioplasty can potentially shorten recanalization times in well-selected patients and can be an effective complimentary procedure in patients with tPA resistant clot. Angioplasty can be performed with a very low complication rate using the technique described and may be associated with good outcomes.

Résumé:

RÉSUMÉ:Contexte et objectif:

Différentes stratégies, dont l’administration intraveineuse et intra-artérielle de t-PA, ont été utilisées pour reperméabiliser l’artère cérébrale moyenne (ACM) et la carotide interne (CI) en phase aiguë de l’accident vasculaire cérébral (AVC). Cependant, la thrombolyse pharmacologique seule peut être inefficace chez des patients qui ont des caillots volumineux (CI terminale, M1 complète). Nous rapportons notre expérience initiale de fragmentation du caillot par voie endovasculaire, au moyen d’un ballonnet mou composé de silicone, associée à la thrombolyse intraveineuse ou intra-artérielle par le t-PA.

Méthodes:

Il s’agit d’une revue rétrospective de neuf patients présentant des symptômes d’AVC aigu thrombotique dans le territoire de l’ACM ou de la CI qui ont été traités par angiophastie intracrânienne par ballonnet. Tous les patients ont consulté moins de six heures après le début des symptômes pour un AVC aigu par occlusion de la circulation antérieure. Les patients chez qui l’angiographie de soustraction a confirmé la présence d’un gros caillot (CI terminale, M1 ou M2 proximale) ont été inclus dans l’étude. Le volume, le flot et le temps moyen de transit sanguin cérébral ont été cartographiés par tomodensitométrie avec perfusion. Si moins de trois heures s’étaient écoulées depuis le début des symptômes, le patient recevait également du t-PA intraveineux. Le t-PA intra-artériel était injecté directement dans le caillot. Si le volume du caillot était jugé important par le neurointerventionniste, il procédait à un essai limité de t-PA intra-artériel suivi d’une angioplastie par ballonnet du caillot résiduel. Le temps écoulé entre l’imagerie et la reperméabilisation était noté. L’issue clinique était évaluée au moyen de l’échelle modifiée de Rankin et de l’indice de Barthel.

Résultats:

Une tomodensitométrie avec perfusion a été effectuée chez 7 (78%) des patients qui tous avaient une quantité appréciable de tissu viable selon le neurointerventionniste et le neurologue traitant. La reperméabilisation (TIMI 2 ou 3) a été possible chez 8 patients (89%). Aucun cas d’hémorragie intracrânienne symptomatique n’a été observé et 2 patients (22%) ont subi des hémorragies asymptomatiques. Le temps moyen écoulé depuis la tomodensitométrie d’urgence jusqu’à la reperméabilisation était de 2,1 heures et le temps moyen depuis le début des symptoms jusqu’à la reperméabilisation était de 4,1 heures. Cinq patients (56%) ont eu un bon résultat. L’invalidité était légère chez un patient (11%) et de modérée à sévère chez 3 patients (33%).

Conclusion:

L’angioplastie du caillot peut abréger le temps de reperméabilisation chez des patients bien choisis et peut constituer une intervention complémentaire efficace chez des patients qui présentent des caillots résistants au t-PA. L’angioplastie peut être effectuée par la technique que nous décrivons, avec de bons résultats et peu de complications.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2006

References

1. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischaemic stroke. N Engl J Med. 1995; 333: 15817.Google Scholar
2. Tomsick, T, Brott, T, Barsan, W, Broderick, J, Haley, HC, Spilke, J, et al. Prognostic value of the hyperdense middle cerebral artery sign and stroke scale score before ultraearly thrombolytic therapy. AJNR Am J Neuroradiol. 1996; 1996: 7985.Google Scholar
3. Furlan, A, Higashida, R, Wechsler, L, Gent, M, Rowley, H, Kase, C et al: for the PROACT Investigators. Intra-arterial prourokinase for acute ischemic stroke: the PROACT II Study: a randomized controlled trial. JAMA. 1999; 1999: 200311.Google Scholar
4. Zaidat, OO; Suarez, JI, Santillan, C, Sunshine, JL, Tarr, RW, Paras, VH. Response to intraarterial and combined intravenous and intraarterial thrombolytic therapy in patients with distal internal carotid artery occlusion. Stroke. 2002; 2002: 18217.Google Scholar
5. Marler, JR, Tilley, BC, Lu, M, Brott, TG, Lyden, PC, Grotta, JC, et al. Early stroke treatment associated with better outcome: the NINDS rt-PA Stroke Study. Neurology. 2000; 2000: 164955.Google Scholar
6. Nakano, S, Iseda, T, Yoneyama, T, Kawano, H, Wakisaka, S. Direct percutaneous transluminal angioplasty for acute middle cerebral artery trunk occlusion: an alternative option to intra-arterial thrombolysis. Stroke. 2002 Dec; 33(12): 28726.CrossRefGoogle ScholarPubMed
7. Yoneyama, T, Nakano, S, Kawano, H, Iseda, T, Ikeda, T, Goya, T et al. Combined direct percutaneous transluminal angioplasty and low-dose native tissue plasminogen activator therapy for acute embolic middle cerebral artery trunk occlusion. AJNR Am J Neuroradiol. 2002; 2002: 27781.Google Scholar
8. Ringer, AJ, Qureshi, AI, Fessler, RD, Guterman, LR, Hopkins, LN. Angioplasty of intracranial occlusion resistant to thrombolysis in acute ischemic stroke. Neurosurgery. 2001; 2001: 12828.Google Scholar
9. Ueda, T, Hatakeyama, T, Kohno, K, Kumon, Y, Sakaki, S. Endovascular treatment of acute thrombotic occlusion of the middle cerebral artery: local intra-arterial thrombolysis combined with percutaneous transluminal angioplasty. Neuroradiology. 1997; 1997: 99104.Google Scholar
10. Ueda, T, Sakaki, S, Nochide, I, Kumon, Y, Kohno, K, Ohta, S. Angioplasty after intra-arterial thrombolysis for acute occlusion of intracranial arteries. Stroke. 1998; 1998: 256874.Google Scholar
11. Nakano, S, Yokogami, K, Ohta, H, Yano, T, Ohnishi, T. Direct percutaneous transluminal angioplasty for acute middle cerebral artery occlusion. AJNR Am J Neuroradiol. 1998;19:767772.Google ScholarPubMed
12. Mori, T, Kazita, K, Mima, T, Mori, K. Balloon angioplasty for embolic total occlusion of the middle cerebral artery and ipsilateral carotid stenting in an acute stroke stage. AJNR Am J Neuroradiol. 1999; 1999: 14624.Google Scholar
13. Quereshi, AI, Siddiqui, AM, Suri, MFK, Kim, SH, Ali, Z, Yahia, AM, et al. Aggressive mechanical clot disruption and low-dose intraarterial third-generation thrombolytic agent for ischemic stroke: a prospective study. Neuorosurgery. 2002; 2002: 131926.Google Scholar
14. Song, JK, Cacayorin, ED, Campbell, MS, Fisher, S, Malkoff, MD, Alexandrov, AV, et al. Intracranial balloon angioplasty of acute terminal internal carotid artery occlusions. AJNR Am J Neuroradiol. 2002; 2002: 130812.Google Scholar
15. TIMI Study Group. Special report: the Thrombolysis in Myocardial Infarction (TIMI) trial. N Engl J Med. 1985; 1985: 9326.Google Scholar
16. Lewandowski, CA, Frankel, M, Tomsick, TA, Broderick, J, Frey, J, Clark, W, et al. Combined intravenous and intra-arterial r-TPA versus intra-arterial therapy of acute ischemic stroke: Emergency Management of Stroke (EMS) Bridging Trial. Stroke. 1999; 1999: 2598605.Google Scholar
17. Hill, MD, Barber, PA, Demchuk, AM, Newcommon, NJ, Cole-Haskayne, A, Ryckborst, K, et al al. Acute intravenous-intraarterial revascularization therapy for severe ischemic stroke. Stroke. 2002; 2002: 27982.Google Scholar
18. Ernst, R, Pancioli, A, Tomsick, T, Kissela, B, Woo, D, Kanter, D, et al. Combined intravenous and intra-arterial recombinant tissue plasminogen activator in acute ischemic stroke. Stroke. 2000; 2000: 25527.Google Scholar
19. Brott, T. Analysis of the NINDS, ECASS I, ECASS II and ATLANTIS Data Sets. In: Proceedings of the 27th International Stroke Conference, February 7-9, 2002, San Antonio, Texas.Google Scholar
20. Felberg, RA, Okon, NJ, El-Mitwalli, A, Burgin, WS, Grotta, JC, Alexandrov, AV, et al. Early dramatic recovery during intravenous tissue plasminogen activator infusion: clinical pattern and outcome in acute middle cerebral artery stroke. Stroke. 2002; 33(5): 13017.Google Scholar
21. Wintermark, M, Reichhart, M, Cuisenaire, O, Maeder, P, Thiran, JP, Schnyder, P, et al. Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke. 2002; 2002: 202531.Google Scholar
22. Wintermark, M, Reichert, M, Thiran, JP, Maeder, P, Chalaron, M, Schnyder, P, et al. Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol. 2002; 51 :417-32 Google Scholar
23. Reichenbach, JR, Röther, J, Jonetz-Mentzel, L, Herzau, M, Fiala, A, Weiller, C, et al. Acute stroke evaluated by time-to-peak mapping during initial and early follow-up perfusion CT studies. AJNR Am J Neuroradiol. 1999; 20:184250.Google ScholarPubMed
24. Koenig, M, Kraus, M, Theek, C, Klotz, E, Gehlen, W, Heuser, L. Quantitative assessment of the ischemic brain by means of perfusion-related parameters derived from perfusion CT. Stroke. 2001; 32 :4317.Google Scholar
25. Eastwood, JD, Lev, MH, Azhari, T, Lee, TY, Barboriak, DP, Delong, DM, et al. CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke. Radiology. 2002; 2002: 22736.Google Scholar
26. Heiss, WD, Kracht, L, Grond, M, Rudolf, J, Bauer, B, Wienhard, K, et al. Early [(11)C] flumazenil/H(2)O positron emission tomography predicts irreversible ischemic cortical damage in stroke patients receiving acute thrombolytic therapy. Stroke. 2000; 2000: 3669.Google Scholar
27. Heiss, WD. Ischemic penumbra: evidence from functional imaging in man. J CerebBlood Flow Metab. 2000; 2000: 127693.Google Scholar
28. Smith, WS, Sung, G, Starkman, S, Saver, JL, Kidwell, CS, Gobin, YP, et al. Safety and efficacy of mechanical embolectomy in acute ischemic stroke: result of the MERCI trial. Stroke. 2005; 2005: 143240.Google Scholar