Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T19:03:31.006Z Has data issue: false hasContentIssue false

Pseudoprogression Following Chemoradiotherapy for Glioblastoma Multiforme

Published online by Cambridge University Press:  02 December 2014

Paul Sanghera
Affiliation:
Odette Cancer Centre Department of Radiation Oncology, University of Toronto Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada University Hospital Birmingham, Edgbaston, Birmingham, United Kingdom
James Perry
Affiliation:
Odette Cancer Centre Division of Neurology, Department of Medicine, University of Toronto Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
Arjun Sahgal
Affiliation:
Odette Cancer Centre Department of Radiation Oncology, University of Toronto Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
Sean Symons
Affiliation:
Department of Medical Imaging, University of Toronto Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
Richard Aviv
Affiliation:
Odette Cancer Centre Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
Meredith Morrison
Affiliation:
Odette Cancer Centre Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
Kelvin Lam
Affiliation:
Institute for Clinical Evaluative Sciences, University of Toronto
Phillip Davey
Affiliation:
Odette Cancer Centre Department of Radiation Oncology, University of Toronto Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
May N. Tsao*
Affiliation:
Odette Cancer Centre Department of Radiation Oncology, University of Toronto Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
*
Odette Cancer Centre, Department of Radiation Oncology, University of Toronto, 2075 Bayview Avenue, T-wing, Toronto, Ontario, M4N 3M5, Canada.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Purpose:

Pseudoprogression (psPD) is now recognised following radiotherapy with concurrent temozolomide (RT/TMZ) for glioblastoma multiforme (GBM). The aim of this study was to determine the incidence of psPD following RT/TMZ and the effect of psPD on prognosis.

Materials/Methods:

All patients receiving RT/TMZ for newly diagnosed GBM were identified from a prospective database. Clinical and radiographic data were retrospectively reviewed. Early progression was defined as radiological progression (RECIST criteria) during or within eight weeks of completing RT/TMZ. Pseudoprogression was defined as early progression with subsequent disease stabilization, without salvage therapy, for at least six months from completion of RT/TMZ. The primary outcome was overall survival (Kaplan-Meier) and log rank analysis was used to compare groups.

Results:

Out of 111 patients analyzed, 104 were evaluable for radiological response. Median age was 58 years and median follow-up 55 weeks. Early progression was confirmed in 26% and within this group 32% had psPD. Median survival for the whole cohort was 56.7 weeks [95% CI (51.0, 71.3)]. Median survival for patients with psPD was significantly higher than for patients with true early progression (124.9 weeks versus 36.0 weeks, p=0.0286).

Conclusions:

Approximately one third of patients with early progression were found to have psPD which was associated with a favourable prognosis. Maintenance TMZ should not be abandoned on the basis of seemingly discouraging imaging features identified within the first three months after RT/TMZ.

Résumé:

RÉSUMÉ:Objectif:

La pseudoprogression (psPD), qui survient après le traitement par radiothérapie associée à l'administration de témozolomide (RT/TMZ) pour traiter le glioblastome multiforme (GBM), est maintenant bien connue. Le but de cette étude était de déterminer l'incidence de la psPD après le traitement par la RT/TMZ et ses conséquences sur le pronostic.

Matériel et méthodes:

Tous les patients traités par RT/TMZ pour un GBM nouvellement diagnostiqué ont été identifiés dans une banque de données prospective. Les données cliniques et radiologiques ont été révisées rétrospectivement. Une progression précoce était définie comme une progression radiologique (critères RECIST) pendant ou au cours des 8 semaines suivant la fin du traitement par RT/TMZ. La pseudoprogression était définie comme la progression précoce suivie d'une stabilisation de la maladie, sans traitement de rattrapage pendant au moins 6 mois après la fin du traitement par RT/TMZ. L'issue primaire était la survie (Kaplan-Meier) et les groupes ont été comparés au moyen du test du log-rank.

Résultats:

Nous avons pu évaluer la réponse radiologique chez 104 des 111 patients étudiés. L'âge médian était de 58 ans et le suivi médian de 55 semaines. Une progression précoce a été confirmée chez 26% des patients et de ce groupe, 32% avaient eu une psPD. La survie médiane de la cohorte entière était de 56,7 semaines (IC à 95% de 51,0 à 71,3). La survie médiane chez les patients qui avaient présenté une psPD était significativement plus élevée que celle des patients qui avaient eu une véritable progression précoce (124,9 semaines versus 36,0 semaines, p = 0,0286).

Conclusions:

Environ un tiers des patients qui ont présenté une progression précoce avaient présenté une psPD associée à un pronostic favorable. Le traitement d'entretien par la TMZ ne devrait pas être abandonné à cause d'une imagerie dont l'aspect semble décourageant dans les trois premiers mois après la RT/TMZ.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological 2010

References

1. Jones, B, Sanghera, P. Estimation of radiobiologic parameters and equivalent radiation dose of cytotoxic chemotherapy in malignant glioma. Int J Radiat Oncol Biol Phys. 2007;68:4418.Google Scholar
2. Paszat, L, Laperriere, N, Groome, P, Schulze, K, Mackillop, W, Holowaty, E. A population-based study of glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2001;51:1007.CrossRefGoogle ScholarPubMed
3. Stupp, R, Mason, WP, van den Bent, MJ, Weller, M, Fisher, B, Taphoorn, MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:98796.Google Scholar
4. Brandsma, D, Stalpers, L, Taal, W, Sminia, P, van den Bent, MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008;9:45361.Google Scholar
5. de Wit, MC, de Bruin, HG, Eijkenboom, W, Sillevis Smitt, PA, van den Bent, MJ. Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology. 2004;63:5357.Google Scholar
6. Brandes, AA, Franceschi, E, Tosoni, A, Blatt, V, Pession, A, Tallini, G, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 2008;26:21927.Google Scholar
7. Taal, W, Brandsma, D, de Bruin, HG, Bromberg, JE, Swaak-Kragten, AT, Smitt, PS, et al. Incidence of early pseudo-progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide. Cancer. 2008;113:40510.Google Scholar
8. Jefferies, S, Burton, K, Jones, P, Burnet, N. Interpretation of early imaging after concurrent radiotherapy and temozolomide for Glioblastoma [abstract]. Clin Oncol. 2007;19:S33.CrossRefGoogle Scholar
9. Clarke, JL, Abrey, LE, Karimi, S, Lassman, AB. Pseudoprogression (PsPr) after concurrent radiotherapy (RT) and temozolomide (TMZ) for newly diagnosed glioblastoma multiforme (GBM) [abstract]. J Clin Oncol. 2008;26:2025.Google Scholar
10. Gerstner, ER, McNamara, MB, Norden, AD, Lafrankie, D, Wen, PY. Effect of adding temozolomide to radiation therapy on the incidence of pseudo-progression. J Neurooncol. Epub 2009 Feb 17.CrossRefGoogle ScholarPubMed
11. Chaskis, C, Neyns, B, Michotte, A, De Ridder, M, Everaert, H. Pseudoprogression after radiotherapy with concurrent temozolomide for high-grade glioma: clinical observations and working recommendations. Surg Neurol. Epub 2009 Jan 14.Google Scholar
12. Therasse, P, Arbuck, SG, Eisenhauer, EA, Wanders, J, Kaplan, RS, Rubinstein, L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:20516.Google Scholar
13. Shah, GD, Kesari, S, Xu, R, Batchelor, TT, O’Neill, AM, Hochberg, FH, et al. Comparison of linear and volumetric criteria in assessing tumor response in adult high-grade gliomas. Neuro Oncol. 2006;8:3846.Google Scholar
14. Burnet, NG, Lynch, AG, Jefferies, SJ, Price, SJ, Jones, PH, Antoun, NM, et al. High grade glioma: imaging combined with pathological grade defines management and predicts prognosis. Radiother Oncol. 2007;85:3718.Google Scholar
15. Mason, WP, Maestro, RD, Eisenstat, D, Forsyth, P, Fulton, D, Laperrière, N, et al. Canadian recommendations for the treatment of glioblastoma multiforme. Curr Oncol. 2007;14:1107.CrossRefGoogle ScholarPubMed
16. Perry, JR, Cairncross, JG. Glioma therapies: how to tell which work? J Clin Oncol. 2003;21:35479.Google Scholar
17. Macdonald, DR, Cascino, TL, Schold, SC Jr, Cairncross, JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8:127780.CrossRefGoogle ScholarPubMed
18. Weller, M, Yung, WK. Bevacizumab-news from the fast lane? Neuro Oncol. 2008;10:647.Google Scholar
19. Vredenburgh, JJ, Desjardins, A, Herndon, JE 2nd, Marcello, J, Reardon, DA, Quinn, JA, et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol. 2007;25:47229.Google Scholar
20. Kreisl, TN, Kim, L, Moore, K, Duic, P, Royce, C, Stroud, I, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol. 2009;10;27:7405.CrossRefGoogle ScholarPubMed
21. Pope, WB, Lai, A, Nghiemphu, P, Mischel, P, Cloughesy, TF. MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology. 2006;66:125860.Google Scholar
22. Perry, JR, Mason, WP, Belanger, K, Kavan, P, Fulton, D, Easaw, J, et al. The temozolomide RESCUE study: a phase II trial of continuous (28/28) dose-intense temozolomide (TMZ) after progression on conventional 5/28 day TMZ in patients with recurrent malignant glioma [abstract]. J Clin Oncol. 2008;26:2010.Google Scholar
23. Chamberlain, MC, Glantz, MJ, Chalmers, L, Van Horn, A, Sloan, AE. Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neurooncol. 2007;82:813.Google Scholar