Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T01:12:35.864Z Has data issue: false hasContentIssue false

Application of physico-chemical typing methods for the epidemiological analysis of Salmonella enteritidis strains of phage type 25/17

Published online by Cambridge University Press:  19 October 2009

G. Seltmann
Affiliation:
Robert-Koch-Institut des Bundesgesundheitsamtes, Bereich Wernigerode, Postfach, D-38843 Wernigerode, Germany
W. Voigt
Affiliation:
Robert-Koch-Institut des Bundesgesundheitsamtes, Bereich Wernigerode, Postfach, D-38843 Wernigerode, Germany
W. Beer
Affiliation:
Robert-Koch-Institut des Bundesgesundheitsamtes, Bereich Wernigerode, Postfach, D-38843 Wernigerode, Germany
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Eighty-nine Salmonella enteritidis phage type 25/17 strains isolated from a localized outbreak in the German state Nordrhein-Westfalen (outbreak NWI) could not be further differentiated by biochemotyping and plasmid pattern analysis. They were submitted to a complex typing system consisting of modern physico-chemical analytical procedures. In lipopolysaccharide pattern analysis the strains proved to be homogeneous. In multilocus enzyme electrophoresis, outer membrane and whole cell protein pattern (WCPP) analysis, and Fourier transform infrared (FT–IR) spectroscopy (increasing extent of differentiation in the given order) strains deviating from each basal pattern were found. The extent of correspondence in these deviations was satisfactory.

Forty-six strains of the same sero- and phage type, however, obtained from different outbreaks, were additionally typed. The results obtained with them indicate that the data of the first group were not restricted to strains from outbreak NWI, but of general validity.

It was found that both WCPP and FT–IR represent valuable methods for the sub-grouping of bacteria.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

References

1.Kühn, H., Rabsch, W., Gericke, B., Reissbrodt, R.. Infektionsepidemiologisehe Analysen von Salmonellosen, Shigellosen und anderen Enterobacteriaceae-Infektionen. Bundesgesundhbl 1993; 36: 324–33.Google Scholar
2.Ørskov, F, Ørskov, I. Summary of a workshop on the clone concept in the epidemiology, taxonomy, and evolution of the Enterobacteriaceae and other bacteria. J Infect Dis 1983; 148: 346–57.CrossRefGoogle ScholarPubMed
3.Seltmann, G., Beer, W., Voigt, W.. Die komplexe Typisierung von Bakterien mit Hilfe moderner physikoehemischer Analysenverfahren. Bundesgesundhbl 1993; 36: 313–18.Google Scholar
4.Lr, Ward, Jdh, De Sa, Rowe, B.A phage typing scheme for Salmonella enteritidis. Epidemiol Infect 1987; 99: 291–4.Google Scholar
5.Vg, Laszlo, Es, Csorian, Paszti, J.Phage types and epidemiological significance of Salmonella enteritidis strains in Hungary between 197G and 1983. Acta Mierobiol Hung 1985; 32: 321–40.Google Scholar
6.Lugtcnberg, B., Meiers, J., Peters, R, van Der Hock, P., van Alphen, L.. Electrophoretic resolution of the ‘major outer membrane protein’ of Escherichia coli K12 into four bands. FEBS letters 1975; 58: 254–8.CrossRefGoogle Scholar
7.C-M, Tsai, CE, Frash. A sensitive silver stain for detecting lipopolysaeeharides in polyacrylamide gels. Analyt Biochem 1982; 119: 115–19.Google Scholar
8.Müller, D, Husmann, H, Hp, Nalik. A new and rapid method for the assay of bacterial fatty acids using high resolution capillary gas ehromatography and trimethylsulfonium hydroxide. Zbl Bakt 1990; 274: 174–82.CrossRefGoogle ScholarPubMed
9.Miller, L., Berger, T.. Bacteria identification by gas ehromatography of whole cell fatty acids. Hewlett-Packard Application Note 1985; 228–41: 18.Google Scholar
10.Rk, Selander, Da, Caugant, Ochmann, H., Jh, Musser, Mx, Cilmour, Ts, Whittam. Methods of multi-locus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environment Mierobiol 1980; 51: 873–4.Google Scholar
11.Rabilloud, T.. A comparison between low background silver diamine and silver nitrate protein stains. Elect rophoresis 1992; 13: 429–39.CrossRefGoogle Scholar
12.Helm, D., Labischinski, H., Schallehn, G., Naumann, D.. Classification and identification of bacteria by Fourier-transform infrared spectroscopy. J Gen Microbiol 1991; 137: 6979.Google ScholarPubMed
13.Helmuth, R., Stephan, R., Bunge, C., Hoog, B., Steinbeck, A., Bulling, E.. Epidemiology of virulence-associated plasmids and outer membrane protein patterns within seven common Salmonella serotypes. Infect Immun 1985; 48: 175–82.CrossRefGoogle ScholarPubMed
14.Da, Bastin, Stevenson, G., Pk, Brown, Haase, A., PR, Reeves. Repeat unit polysaccharides of bacteria: a model for polymerization resembling that of ribosomes and fatty acid synthetase, with a novel mechanism for determining chain length. Mol Microbiol 1993; 7: 725–34.Google Scholar
15.Naumann, D., Helm, D., Labischinski, H., Giesbrecht, P.. The characterization of microorganisms by Fourier-transform infrared spectroscopy (FT-IR). In: WH, Nelson, ed. Modern techniques for rapid microbiological analysis. Weinheim, New York: Verlag Chemie 1991: 3496.Google Scholar
16.Westphal, O., Jann, K.. Bacterial lipopolysaccharides. Extraction with phenol/water and further applications of the procedure. In: RL, Whistler, ed. Methods in carbohydrate chemistry, vol. 5. New York: Academic Press, 1965: 8391.Google Scholar
17.Sugawara, E., Nikaido, H.. Pore-forming activity of OmpA protein of Escherichia coli. J Biol Chem 1992; 267: 2507–11.CrossRefGoogle ScholarPubMed
18.Kühn, H., Rabsch, W., Liesegang, A.. Gegenwiirtige epidemiologische Situation bei der Salmonellose des Menschen in Deutschland. Immun Infekt 1994; 22: 49.Google Scholar
19.Costas, M., Holmes, B., Ll, Sloss. Numerical analysis of electrophoretic protein patterns of Providencia rustiganii strains from human diarrhoea and other sources. J Appl Biol 1987; 63: 319–28.Google Scholar
20.Je, Olsen, Dj, Brown, DL, Baggesen, Bisgaard, M.. Biochemical and molecular characterization of Salmonella enterica serovar berta, and a comparison of methods for typing. Epidemiol Infect 1992; 108: 243–60.Google Scholar
21.Norrung, B., Gerner-Smidt, P.. Comparison of multilocus enzyme electrophoresis (MEE), ribotyping, restriction enzyme analysis (REA) and phage typing for typing of Listeria monocytogenes. Epidemiol Infect 1993; 111: 71–9.CrossRefGoogle ScholarPubMed
22.Rk, Selander, Beltran, P., Nh, Smith. Evolutionary genetics of Salmonella. In: Rk, Selander, G., Clark, Ts, Whittam, eds. Evolution at the molecular level. Sunderland, Mass.: Sinauer Ass. 1991: 2457.Google Scholar
23.Ad, Stubbs, Fw, Hickman-Brenner, Cameron, D., Farmer, JJ. III. Differentiation of Salmonella enteriiidis phage 8 strains: evaluation of three additional phage typing systems, plasmid profiles, antibiotic susceptibility patterns, and biotyping. J Clin Microbiol 1994; 32: 199201.Google Scholar
24.Ma, Usera, Popovic, T., Ca, Bopp, Na, Strockbine. Molecular subtyping of Salmonella enleritidis phage 8 strains from the United States. J Clin Microbiol 1994; 32: 194–8.Google Scholar
25.Achtman, M., Mercer, A., Kusecek, B. et al. Six widespread bacterial clones among Escherichia coli Kl isolates. Infect Immun 1983; 39: 315–35.CrossRefGoogle Scholar