Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-18T07:44:43.042Z Has data issue: false hasContentIssue false

Comparison of right ventricular deformation and dyssynchrony in patients with different subtypes of hypoplastic left heart syndrome after Fontan surgery using two-dimensional speckle tracking

Published online by Cambridge University Press:  19 May 2011

Colin Petko*
Affiliation:
Klinik für angeborene Herzfehler und Kinderkardiologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
Inga Voges
Affiliation:
Klinik für angeborene Herzfehler und Kinderkardiologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
Jana Schlangen
Affiliation:
Klinik für angeborene Herzfehler und Kinderkardiologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
Jens Scheewe
Affiliation:
Klinik für Herz- und Gefäßchirurgie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
Hans-Heiner Kramer
Affiliation:
Klinik für angeborene Herzfehler und Kinderkardiologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
Anselm S. Uebing
Affiliation:
Klinik für angeborene Herzfehler und Kinderkardiologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
*
Correspondence to: Dr C. Petko, Klinik für angeborene Herzfehler und Kinderkardiologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Schwanenweg 20, 24105 Kiel, Germany. Tel: +44 431 597 1728; Fax: +44 431 597 1828; E-mail: petko@pedcard.uni-kiel.de

Abstract

Background

The left ventricle in patients with hypoplastic left heart syndrome may influence right ventricular function and outcome. We aimed to investigate differences in right ventricular deformation and intraventricular dyssynchrony between hypoplastic left heart syndrome patients with different anatomical subtypes and left ventricle sizes after Fontan surgery using two-dimensional speckle tracking.

Patients and methods

We examined 29 hypoplastic left heart syndrome patients aged 5.4 plus or minus 2.8 years after Fontan surgery and compared 15 patients with mitral and aortic atresia with the remaining 14 patients with other anatomic subtypes. We used two-dimensional speckle tracking to measure the global and regional systolic longitudinal strain and strain rate as well as intraventricular dyssynchrony.

Results

Global strain (−19.5, 2.8% versus −17.4, 3.9%) and global strain rate (−1.0, 0.2 per second versus −0.9, 0.3 per second) were not different between groups. The mitral and aortic atresia group had higher strain in the basal septal (−13.0, 5.0% versus −3.9, 9.3%, p = 0.003) and mid-septal (−19.4, 4.7% versus −13.2, 6.5%, p = 0.009) segments, and higher strain rates in the mid-septal segment (−1.14, 0.3 per second versus −0.95, 0.4 per second, p = 0.047), smaller left ventricle area (0.18, 0.41 square centimetre versus 2.83, 2.07 square centimetre, p = 0.0001), and shorter wall-to-wall delay (38, 29 milliseconds versus 81, 57 milliseconds, p = 0.02).

Conclusion

Significant differences in regional deformation and intraventricular dyssynchrony exist between the mitral and aortic atresia subtype with small left ventricles and the other anatomic subtypes with larger left ventricles after Fontan surgery.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Amundsen, BH, Helle-Valle, T, Edvardsen, T, et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 2006; 47: 789793.Google Scholar
2.Teske, AJ, De Boeck, BW, Olimulder, M, Prakken, NH, Doevendans, PA, Cramer, MJ. Echocardiographic assessment of regional right ventricular function: a head-to-head comparison between 2-dimensional and tissue Doppler-derived strain analysis. J Am Soc Echocardiogr 2008; 21: 275283.Google Scholar
3.Bansal, M, Cho, GY, Chan, J, Leano, R, Haluska, BA, Marwick, TH. Feasibility and accuracy of different techniques of two-dimensional speckle based strain and validation with harmonic phase magnetic resonance imaging. J Am Soc Echocardiogr 2008; 21: 13181325.Google Scholar
4.Pettersen, E, Fredriksen, PM, Urheim, S, et al. Ventricular function in patients with transposition of the great arteries operated with arterial switch. Am J Cardiol 2009; 104: 583589.CrossRefGoogle ScholarPubMed
5.Knirsch, W, Dodge-Khatami, A, Kadner, A, et al. Assessment of myocardial function in pediatric patients with operated tetralogy of Fallot: preliminary results with 2D strain echocardiography. Pediatr Cardiol 2008; 29: 718725.Google Scholar
6.Kalogeropoulos, AP, Georgiopoulou, VV, Giamouzis, G, et al. Myocardial deformation imaging of the systemic right ventricle by two-dimensional strain echocardiography in patients with d-transposition of the great arteries. Hellenic J Cardiol 2009; 50: 275282.Google ScholarPubMed
7.Moiduddin, N, Texter, KM, Zaidi, AN, et al. Two-dimensional speckle strain and dyssynchrony in single right ventricles versus normal right ventricles. J Am Soc Echocardiogr 2010; 23: 673679.Google Scholar
8.Wisler, J, Khoury, PR, Kimball, TR. The effect of left ventricular size on right ventricular hemodynamics in pediatric survivors with hypoplastic left heart syndrome. J Am Soc Echocardiogr 2008; 21: 464469.Google Scholar
9.Walsh, MA, McCrindle, BW, Dipchand, A, et al. Left ventricular morphology influences mortality after the Norwood operation. Heart 2009; 95: 12381244.CrossRefGoogle ScholarPubMed
10.Furck, AK, Uebing, A, Hansen, JH, et al. Outcome of the Norwood operation in patients with hypoplastic left heart syndrome: a 12-year single-center survey. J Thorac Cardiovasc Surg 2010; 139: 359365.Google Scholar
11.Moller, P, Weitz, M, Jensen, KO, et al. Exercise capacity of a contemporary cohort of children with hypoplastic left heart syndrome after staged palliation. Eur J Cardiothorac Surg 2009; 36: 980985.Google Scholar
12.Perk, G, Tunick, PA, Kronzon, I. Non-Doppler two-dimensional strain imaging by echocardiography – from technical considerations to clinical applications. J Am Soc Echocardiogr 2007; 20: 234243.Google Scholar
13.Jonas, RA, Hansen, DD, Cook, N, Wessel, D. Anatomic subtype and survival after reconstructive operation for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 1994; 107: 11211127.CrossRefGoogle ScholarPubMed
14.Sugiyama, H, Yutani, C, Iida, K, Arakaki, Y, Yamada, O, Kamiya, T. The relation between right ventricular function and left ventricular morphology in hypoplastic left heart syndrome: angiographic and pathological studies. Pediatr Cardiol 1999; 20: 422427.Google Scholar
15.Petko, C, Moller, P, Hoffmann, U, Kramer, HH, Uebing, A. Comprehensive evaluation of right ventricular function in children with different anatomical subtypes of hypoplastic left heart syndrome after Fontan surgery. Int J Cardiol 2010 [Epub ahead of print].Google Scholar
16.Singh, GK, Cupps, B, Pasque, M, Woodard, PK, Holland, MR, Ludomirsky, A. Accuracy and reproducibility of strain by speckle tracking in pediatric subjects with normal heart and single ventricular physiology: a two-dimensional speckle-tracking echocardiography and magnetic resonance imaging correlative study. J Am Soc Echocardiogr 2010; 23: 11431152.CrossRefGoogle Scholar