Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-27T11:14:37.370Z Has data issue: false hasContentIssue false

Probable Alzheimer's Disease Patients Presenting as “Focal Temporal Lobe Dysfunction” Show a Slow Rate of Cognitive Decline

Published online by Cambridge University Press:  24 November 2011

Camillo Marra*
Affiliation:
Department of Neuroscience – Center for Neuropsychological Research, Catholic University of Sacred Heart, Rome, Italy
Giampiero Villa
Affiliation:
Department of Neuroscience – Center for Neuropsychological Research, Catholic University of Sacred Heart, Rome, Italy
Davide Quaranta
Affiliation:
Department of Neuroscience – Center for Neuropsychological Research, Catholic University of Sacred Heart, Rome, Italy
Alessandro Valenza
Affiliation:
Neurological Unit, Ospedale Belcolle, Viterbo, Italy
Maria Gabriella Vita
Affiliation:
Department of Neuroscience – Center for Neuropsychological Research, Catholic University of Sacred Heart, Rome, Italy
Guido Gainotti
Affiliation:
Department of Neuroscience – Center for Neuropsychological Research, Catholic University of Sacred Heart, Rome, Italy
*
Correspondence and reprint requests to: Camillo Marra, Department of Neuroscience, Catholic University of Sacred Heart, Largo A. Gemelli, 00168 – Roma, Italy. E-mail: cmarra@rm.unicatt.it

Abstract

Several authors have recently shown that anterograde amnesia is often associated with semantic memory impairment in amnesic MCI patients. Similarly, after the MCI condition, some patients who convert to Alzheimer's disease (AD) show the classic onset (cAD) characterized by the impairment of memory and executive functions, whereas other AD patients show isolated defects of episodic and semantic memory without deficits in other cognitive domains. The latter have been considered an AD variant characterized by ‘focal Temporal Lobe Dysfunction’ (TLD). The aim of the present study was to assess the differences in disease progression between cAD and TLD. For this purpose a continuous series of newly diagnosed probable AD patients presenting as cAD (n = 30) and TLD (n = 25), matched for severity, and 65 healthy controls underwent a comprehensive neuropsychological evaluation at baseline; TLD and cAD were re-evaluated at a 24-month follow-up. At follow-up, TLD patients showed no significant worsening of cognitive functions, whereas cAD subjects displayed a significant worsening in all explored cognitive domains. In conclusion, our results confirm that probable AD presenting as TLD represents a specific onset of AD characterized by a slower rate of progression. (JINS, 2012, 18, 144–150)

Type
Brief Communications
Copyright
Copyright © The International Neuropsychological Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adlam, A.L., Bozeat, S., Arnold, R., Watson, P., Hodges, J.R. (2006). Semantic knowledge in mild cognitive impairment and mild Alzheimer's disease. Cortex, 42(5), 675684.CrossRefGoogle ScholarPubMed
Ahmed, S., Arnold, R., Thompson, S.A., Graham, K.S., Hodges, J.R. (2008). Naming of objects, faces and buildings in mild cognitive impairment. Cortex, 44(6), 746752.CrossRefGoogle ScholarPubMed
Alladi, S., Xuereb, J., Bak, T., Nestor, P., Knibb, J., Patterson, K. (2007). Focal cortical presentations of Alzheimer's disease. Brain, 130(Pt 10), 26362645.CrossRefGoogle ScholarPubMed
Bien, C.G., Helmstaedter, C., Elger, C.E. (2001). Is it really Alzheimer's disease? Journal of Neurology, Neurosurgery, and Psychiatry, 71(3), 416417.CrossRefGoogle ScholarPubMed
Braak, H., Braak, E. (1987). Argyrophilic grains: Characteristic pathology of cerebral cortex in cases of adult onset dementia without Alzheimer changes. Neuroscience Letters, 76(1), 124127.CrossRefGoogle ScholarPubMed
Braak, H., Braak, E. (1989). Cortical and subcortical argyrophilic grains characterize a disease associated with adult onset dementia. Neuropathology and Applied Neurobiology, 15(1), 1326.CrossRefGoogle ScholarPubMed
Burns, A., Jacoby, R., Levy, R. (1991). Progression of cognitive impairment in Alzheimer's disease. Journal of the American Geriatric Society, 39(1), 3945.CrossRefGoogle ScholarPubMed
Butters, M.A., Lopez, O.L., Becker, J.T. (1996). Focal temporal lobe dysfunction in probable Alzheimer's disease predicts a slow rate of cognitive decline. Neurology, 46(3), 687692.CrossRefGoogle ScholarPubMed
Caffarra, P., Vezzadini, G., Dieci, F., Zonato, F., Venneri, A. (2002). Una versione abbreviata del test di Stroop: dati normativi nella popolazione italiana. Nuova Rivista di Neurologia, 12(4), 111115.Google Scholar
Cappa, A., Calcagni, M.L., Villa, G., Giordano, A., Marra, C., De Rossi, G. (2001). Brain perfusion abnormalities in Alzheimer's disease: Comparison between patients with focal temporal lobe dysfunction and patients with diffuse cognitive impairment. Journal of Neurology, Neurosurgery, and Psychiatry, 70(1), 2227.CrossRefGoogle ScholarPubMed
Carlesimo, G.A., Caltagirone, C., Gainotti, G. (1996). The Mental Deterioration Battery: Normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The Group for the Standardization of the Mental Deterioration Battery. European Neurology, 36(6), 378384.CrossRefGoogle Scholar
Convit, A., de Asis, J., de Leon, M.J., Tarshish, C.Y., De Santi, S., Rusinek, H. (2000). Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer's disease. Neurobiology of Aging, 21(1), 1926.CrossRefGoogle ScholarPubMed
Davies, R.R., Graham, K.S., Xuereb, J.H., Williams, G.B., Hodges, J.R. (2004). The human perirhinal cortex and semantic memory. European Journal of Neuroscience, 20(9), 24412446.CrossRefGoogle ScholarPubMed
Drachman, D.A., O'Donnell, B.F., Lew, R.A., Swearer, J.M. (1990). The prognosis in Alzheimer's disease. ‘How far’ rather than ‘how fast’ best predicts the course. Archives of Neurology, 47(8), 851856.CrossRefGoogle ScholarPubMed
Dudas, R.B., Clague, F., Thompson, S.A., Graham, K.S., Hodges, J.R. (2005). Episodic and semantic memory in mild cognitive impairment. Neuropsychologia, 43(9), 12661276.CrossRefGoogle ScholarPubMed
Ferrer, I., Santpere, G., van Leeuwen, F.W. (2008). Argyrophilic grain disease. Brain, 131(Pt 6), 14161432.CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., McHugh, P.R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198.CrossRefGoogle ScholarPubMed
Gainotti, G., Marra, C., Villa, G. (2001). A double dissociation between accuracy and time of execution on attentional tasks in Alzheimer's disease and multi-infarct dementia. Brain, 124(Pt 4), 731738.CrossRefGoogle ScholarPubMed
Gainotti, G., Miceli, G., Caltagirone, C. (1977). Constructional apraxia in left brain-damaged patients: A planning disorder? Cortex, 13(2), 109118.CrossRefGoogle ScholarPubMed
Galton, C.J., Patterson, K., Xuereb, J.H., Hodges, J.R. (2000). Atypical and typical presentations of Alzheimer's disease: A clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain, 123(Pt 3), 484498.CrossRefGoogle ScholarPubMed
Helmstaedter, C., Elger, C.E. (1999). The phantom of progressive dementia in epilepsy. Lancet, 354(9196), 21332134.CrossRefGoogle ScholarPubMed
Hodges, J.R., Patterson, K. (1995). Is semantic memory consistently impaired early in the course of Alzheimer's disease? Neuroanatomical and diagnostic implications. Neuropsychologia, 33(4), 441459.CrossRefGoogle ScholarPubMed
Howieson, D.B., Carlson, N.E., Moore, M.M., Wasserman, D., Abendroth, C.D., Payne-Murphy, J. (2008). Trajectory of mild cognitive impairment onset. Journal of the International Neuropsychological Society, 14(2), 192198.CrossRefGoogle ScholarPubMed
Lee, K.L., Harrell, F.E. Jr., Tolley, H.D., Rosati, R.A. (1983). A comparison of test statistics for assessing the effects of concomitant variables in survival analysis. Biometrics, 39(2), 341350.CrossRefGoogle ScholarPubMed
Libon, D.J., Xie, S.X., Eppig, J., Wicas, G., Lamar, M., Lippa, C. (2010). The heterogeneity of mild cognitive impairment: A neuropsychological analysis. Journal of the International Neuropsychological Society, 16(1), 8493.CrossRefGoogle ScholarPubMed
Marra, C., Silveri, M.C., Gainotti, G. (2000). Predictors of cognitive decline in the early stage of probable Alzheimer's disease. Dementia and Geriatric Cognitive Disorders, 11(4), 212218.CrossRefGoogle ScholarPubMed
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M. (1984). Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology, 34(7), 939944.CrossRefGoogle ScholarPubMed
Murphy, K.J., Rich, J.B., Troyer, A.K. (2006). Verbal fluency patterns in amnestic mild cognitive impairment are characteristic of Alzheimer's type dementia. Journal of the International Neuropsychological Society, 12(4), 570574.CrossRefGoogle ScholarPubMed
Neary, D., Snowden, J.S., Gustafson, L., Passant, U., Stuss, D., Black, S. (1998). Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria. Neurology, 51(6), 15461554.CrossRefGoogle ScholarPubMed
Nestor, P.J., Fryer, T.D., Hodges, J.R. (2006). Declarative memory impairments in Alzheimer's disease and semantic dementia. Neuroimage, 30(3), 10101020.CrossRefGoogle ScholarPubMed
Ortof, E., Crystal, H.A. (1989). Rate of progression of Alzheimer's disease. Journal of the American Geriatrics Society, 37(6), 511514.CrossRefGoogle ScholarPubMed
Raven, J.C. (1949). Progressive matrices (1947): Sets A, Ab, B: board and book forms. London: H.K. Lewis.Google Scholar
Rey, A. (1958). Mémorisation d'une serie de 15 mot en 5 répétitions. In A. Rey (Ed.), L'examen clinique en psychologie. Paris: Presses Universitaire de France.Google Scholar
Shiino, A., Watanabe, T., Maeda, K., Kotani, E., Akiguchi, I., Matsuda, M. (2006). Four subgroups of Alzheimer's disease based on patterns of atrophy using VBM and a unique pattern for early onset disease. Neuroimage, 33(1), 1726.CrossRefGoogle Scholar
Steuerwald, G.M., Baumann, T.P., Taylor, K.I., Mittag, M., Adams, H., Tolnay, M. (2007). Clinical characteristics of dementia associated with argyrophilic grain disease. Dementia and Geriatric Cognitive Disorders, 24(3), 229234.CrossRefGoogle ScholarPubMed
Teri, L., Hughes, J.P., Larson, E.B. (1990). Cognitive deterioration in Alzheimer's disease: Behavioral and health factors. Journal of Gerontology, 45(2), P58P63.CrossRefGoogle ScholarPubMed
Togo, T., Isojima, D., Akatsu, H., Suzuki, K., Uchikado, H., Katsuse, O. (2005). Clinical features of argyrophilic grain disease: A retrospective survey of cases with neuropsychiatric symptoms. The American Journal of Geriatric Psychiatry, 13(12), 10831091.CrossRefGoogle ScholarPubMed
Wechsler, D. (1981). Wechsler Adult Intelligence Scale: WAIS-R manual. New York: Psychological Corporation.Google Scholar
Zarow, C., Sitzer, T.E., Chui, H.C. (2008). Understanding hippocampal sclerosis in the elderly: Epidemiology, characterization, and diagnostic issues. Current Neurology and Neuroscience Reports, 8(5), 363370.CrossRefGoogle ScholarPubMed