Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T20:18:00.875Z Has data issue: false hasContentIssue false

What does neuroimaging tell us about morphosyntactic processing in the brain of second language learners?*

Published online by Cambridge University Press:  13 July 2015

M. PAULA RONCAGLIA-DENISSEN*
Affiliation:
Institute for Language, Logic and Computation (ILLC), Amsterdam Brain and Cognition (ABC), Universiteit van Amsterdam
SONJA A. KOTZ
Affiliation:
Max Planck for Human Cognitive and Brain Sciences, Leipzig School of Psychological Sciences, the University of Manchester
*
Address for correspondence: M. Paula Roncaglia-Denissen, Universiteit van Amsterdam, Institute for Logic, Language and Computation, Science Park 107, 1098 XG, Amsterdam, The Netherlandsm.p.roncaglia@uva.nl

Abstract

This review article provides an overview of the neural correlates of second language (L2) morphosyntactic processing of the past 20 years. Morphosyntactic processing is of great relevance for our understanding of second language acquisition as it is believed to be more sensitive to age of acquisition (AoA) and maturational constraints than other linguistic sub-processes, i.e., lexical- and semantic processing.

In this review we present the more general questions raised by the first neuroimaging studies, namely, whether L1 and L2 neural representation of morphosyntax is shared or segregated. Next, we present studies that addressed the impact of AoA, proficiency level, and language transfer on L2 morphosyntactic processing and representation and their findings. We then discuss these findings in light of the procedural/declarative and unified competition models. Finally, we suggest some future directions for studies investigating L2 morphosyntactic processing using neuroimaging techniques. With this article we aim to provide the reader with an overview of what is currently known in terms of L2 morphosyntactic representation and processing and emphasize aspects that have remained understudied.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

M. Paula Roncaglia-Denissen is supported by the NWO-Horizon project Knowledge and culture.

References

Abutalebi, J. (2008). Neural aspects of second language representation and language control. Acta Psychologica, 128 (3), 466478. http://doi.org/10.1016/j.actpsy.2008.03.014 Google Scholar
Albert, M., & Obler, A. (1978). The bilingual brain: Neuropsychological and neurolinguistic aspects of bilingualism. (Academic Press). New York.Google Scholar
Birdsong, D. (2006). Age and Second Language Acquisition and Processing: A Selective Overview. Language Learning, 56, 949. http://doi.org/10.1111/j.1467-9922.2006.00353.x Google Scholar
Bley-Vroman, R. (1989). In Gass, S. M. & Schachter, J. (Eds.), Linguistic Perspectives on Second Language Acquisition (Vol. 4, pp. 168). Cambridge University Press.Google Scholar
Chee, M. W. L., Caplan, D., Soon, C. S., Sriram, N., Tan, E. W. L., Thiel, T., & Weekes, B. (1999). Processing of Visually Presented Sentences in Mandarin and English Studied with fMRI. Neuron, 23 (1), 127137. http://doi.org/10.1016/S0896-6273(00)80759-X Google Scholar
Dehaene, S., Dupoux, E., Mehler, J., Cohen, L., Paulesu, E., Perani, D., Van de Moortele, P. -F., Lehericy, S., & Le Bihan, D. (1997). Anatomical variability in the cortical representation of first and second language. Neuroreport, 8 (17), 38093815.Google Scholar
DeKeyser, R. M. (2000). The robustness of critical period effects in second language acquisition. Studies in Second Language Acquisition, 22 (04), 499533.Google Scholar
Dodel, S., Golestani, N., Pallier, C., ElKouby, V., Bihan, D. L., & Poline, J.-B. (2005). Condition-dependent functional connectivity: syntax networks in bilinguals. Philosophical Transactions of the Royal Society B: Biological Sciences, 360 (1457), 921935. http://doi.org/10.1098/rstb.2005.1653 Google Scholar
Golestani, N., Alario, F.-X., Meriaux, S., Le Bihan, D., Dehaene, S., & Pallier, C. (2006). Syntax production in bilinguals. Neuropsychologia, 44 (7), 10291040. http://doi.org/10.1016/j.neuropsychologia.2005.11.009 CrossRefGoogle ScholarPubMed
Hasegawa, M., Carpenter, P. A., & Just, M. A. (2002). An fMRI Study of Bilingual Sentence Comprehension and Workload. NeuroImage, 15 (3), 647660. http://doi.org/10.1006/nimg.2001.1001 Google Scholar
Hernandez, A. E., Hofmann, J., & Kotz, S. A. (2007). Age of acquisition modulates neural activity for both regular and irregular syntactic functions. NeuroImage, 36 (3), 912923. http://doi.org/10.1016/j.neuroimage.2007.02.055 Google Scholar
Jeong, H., Sugiura, M., Sassa, Y., Haji, T., Usui, N., Taira, M., Horie, K., Sato, S., & Kawashima, R. (2007). Effect of syntactic similarity on cortical activation during second language processing: A comparison of English and Japanese among native Korean trilinguals. Human Brain Mapping, 28 (3), 194204. http://doi.org/10.1002/hbm.20269 Google Scholar
Jeong, H., Sugiura, M., Sassa, Y., Yokoyama, S., Horie, K., Sato, S., Taira, M., & Kawashima, R. (2007). Cross-linguistic influence on brain activation during second language processing: An fMRI study. Bilingualism: Language and Cognition, 10 (02), 175187. http://doi.org/10.1017/S1366728907002921 Google Scholar
Johnson, J. S., & Newport, E. L. (1989). Critical period effects in second language learning: The influence of maturational state on the acquisition of English as a second language. Cognitive Psychology, 21 (1), 6099. http://doi.org/10.1016/0010-0285(89)90003-0 Google Scholar
Kim, K. H. S., Relkin, N. R., Lee, K.-M., & Hirsch, J. (1997). Distinct cortical areas associated with native and second languages. Nature, 388 (6638), 171174. http://doi.org/10.1038/40623 Google Scholar
Klein, D., Milner, B., Zatorre, R. J., Meyer, E., & Evans, A. C. (1995). The neural substrates underlying word generation: a bilingual functional-imaging study. Proceedings of the National Academy of Sciences, 92 (7), 28992903. http://doi.org/10.1073/pnas.92.7.2899 Google Scholar
Klein, D., Zatorre, R. J., Milner, B., Meyer, E., & Evans, A. C. (1994). Left putaminal activation when speaking a second language: Evidence from PET. Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience, 5 (17), 22952297. http://doi.org/10.1097/00001756-199411000-00022 Google Scholar
Kotz, S. A. (2009). A critical review of ERP and fMRI evidence on L2 syntactic processing. Brain and Language, 109 (2–3), 6874. http://doi.org/10.1016/j.bandl.2008.06.002 Google Scholar
Kovelman, I., Baker, S. A., & Petitto, L.-A. (2007). Bilingual and Monolingual Brains Compared: A Functional Magnetic Resonance Imaging Investigation of Syntactic Processing and a Possible “Neural Signature” of Bilingualism. Journal of Cognitive Neuroscience, 20 (1), 153169. http://doi.org/10.1162/jocn.2008.20011 Google Scholar
Lenneberg, E. H. (1967). Biological Foundations of Language. Wiley.Google Scholar
Luke, K.-K., Liu, H.-L., Wai, Y.-Y., Wan, Y.-L., & Tan, L. H. (2002). Functional anatomy of syntactic and semantic processing in language comprehension. Human Brain Mapping, 16 (3), 133145. http://doi.org/10.1002/hbm.10029 Google Scholar
MacWhinney, B. (2005). A unified model of language acquisition. In Kroll, J. & de Groot, G. (Eds.), Handbook of Bilingualism: Psycholinguistic Approaches: Psycholinguistic Approaches (pp. 4967). Oxford University Press.Google Scholar
Mahendra, N., Plante, E., Magloire, J., Milman, L., & Trouard, T. P. (2003). fMRI variability and the localization of languages in the bilingual brain: NeuroReport, 14 (9), 12251228. http://doi.org/10.1097/00001756-200307010-00007 Google Scholar
Musso, M., Moro, A., Glauche, V., Rijntjes, M., Reichenbach, J., Büchel, C., & Weiller, C. (2003). Broca's area and the language instinct. Nature Neuroscience, 6 (7), 774781. http://doi.org/10.1038/nn1077 Google Scholar
Nakada, T., Fujii, Y., & Kwee, I. L. (2001). Brain strategies for reading in the second language are determined by the first language. Neuroscience Research, 40 (4), 351358. http://doi.org/10.1016/S0168-0102(01)00247-4 CrossRefGoogle ScholarPubMed
Ojemann, G. A., & Whitaker, H. A. (1978). The bilingual brain. Archives of Neurology, 35 (7), 409412. http://doi.org/10.1001/archneur.1978.00500310011002 Google Scholar
Perani, D., Dehaene, S., Grassi, F., Cohen, L., Cappa, S. F., Dupoux, E., Fazio, F., & Mehler, J. (1996). Brain processing of native and foreign languages. Neuroreport, 7 (15–17), 24392444.Google Scholar
Perani, D., Paulesu, E., Galles, N. S., Dupoux, E., Dehaene, S., Bettinardi, V., Cappa, S. F., Fazio, F., & Mehler, J. (1998). The bilingual brain. Proficiency and age of acquisition of the second language. Brain, 121 (10), 18411852. http://doi.org/10.1093/brain/121.10.1841 Google Scholar
Petersson, K.-M., Folia, V., & Hagoort, P. (2012). What artificial grammar learning reveals about the neurobiology of syntax. Brain and Language, 120 (2), 8395. http://doi.org/10.1016/j.bandl.2010.08.003 Google Scholar
Rüschemeyer, S.-A., Fiebach, C. J., Kempe, V., & Friederici, A. D. (2005). Processing lexical semantic and syntactic information in first and second language: fMRI evidence from German and Russian. Human Brain Mapping, 25 (2), 266286. http://doi.org/10.1002/hbm.20098 Google Scholar
Rüschemeyer, S.-A., Zysset, S., & Friederici, A. D. (2006). Native and non-native reading of sentences: An fMRI experiment. NeuroImage, 31 (1), 354365. http://doi.org/10.1016/j.neuroimage.2005.11.047 Google Scholar
Sakai, K. L., Miura, K., Narafu, N., & Muraishi, Y. (2004). Correlated Functional Changes of the Prefrontal Cortex in Twins Induced by Classroom Education of Second Language. Cerebral Cortex, 14 (11), 12331239. http://doi.org/10.1093/cercor/bhh084 Google Scholar
Sakai, K. L., Nauchi, A., Tatsuno, Y., Hirano, K., Muraishi, Y., Kimura, M., Bostwick, M., & Yusa, N. (2009). Distinct roles of left inferior frontal regions that explain individual differences in second language acquisition. Human Brain Mapping, 30 (8), 24402452. http://doi.org/10.1002/hbm.20681 Google Scholar
Silverberg, R., & Gordon, H. W. (1979). Differential aphasia in two bilingual individuals. Neurology, 29 (1), 5151. http://doi.org/10.1212/WNL.29.1.51 Google Scholar
Singleton, D. (2005). The Critical Period Hypothesis: A coat of many colours. International Review of Applied Linguistics in Language Teaching, 43 (4), 269285. http://doi.org/10.1515/iral.2005.43.4.269 Google Scholar
Steinhauer, K. (2014). Event-related Potentials (ERPs) in Second Language Research: A Brief Introduction to the Technique, a Selected Review, and an Invitation to Reconsider Critical Periods in L2. Applied Linguistics, amu028. http://doi.org/10.1093/applin/amu028 Google Scholar
Suh, S., Yoon, H. W., Lee, S., Chung, J.-Y., Cho, Z.-H., & Park, H. (2007). Effects of syntactic complexity in L1 and L2; An fMRI study of Korean–English bilinguals. Brain Research, 1136, 178189. http://doi.org/10.1016/j.brainres.2006.12.043 CrossRefGoogle ScholarPubMed
Tan, L. H., Spinks, J. A., Feng, C.-M., Siok, W. T., Perfetti, C. A., Xiong, J., Fox, P. T., & Gao, J.-H. (2003). Neural systems of second language reading are shaped by native language. Human Brain Mapping, 18 (3), 158166. http://doi.org/10.1002/hbm.10089 Google Scholar
Tatsuno, Y., & Sakai, K. L. (2005). Language-Related Activations in the Left Prefrontal Regions Are Differentially Modulated by Age, Proficiency, and Task Demands. The Journal of Neuroscience, 25 (7), 16371644. http://doi.org/10.1523/jneurosci.3978-04.2005 Google Scholar
Tettamanti, M., Alkadhi, H., Moro, A., Perani, D., Kollias, S., & Weniger, D. (2002). Neural Correlates for the Acquisition of Natural Language Syntax. NeuroImage, 17 (2), 700709. http://doi.org/10.1006/nimg.2002.1201 Google Scholar
Ullman, M. T. (2001). The neural basis of lexicon and grammar in first and second language: the declarative/procedural model. Bilingualism: Language and Cognition, 4 (02), 105122. http://doi.org/10.1017/S1366728901000220 Google Scholar
Ullman, M. T. (2004). Contributions of memory circuits to language: the declarative/procedural model. Cognition, 92 (1–2), 231270. http://doi.org/10.1016/j.cognition.2003.10.008 Google Scholar
Vingerhoets, G., Borsel, J. V., Tesink, C., van den Noort, M., Deblaere, K., Seurinck, R., Vandemaele, P., & Achten, E. (2003). Multilingualism: an fMRI study. NeuroImage, 20 (4), 21812196. http://doi.org/10.1016/j.neuroimage.2003.07.029 Google Scholar
Wartenburger, I., Heekeren, H. R., Abutalebi, J., Cappa, S. F., Villringer, A., & Perani, D. (2003). Early Setting of Grammatical Processing in the Bilingual Brain. Neuron, 37 (1), 159170. http://doi.org/10.1016/S0896-6273(02)01150-9 Google Scholar
Weber-Fox, C. M., & Neville, H. J. (1996). Maturational Constraints on Functional Specializations for Language Processing: ERP and Behavioral Evidence in Bilingual Speakers. Journal of Cognitive Neuroscience, 8 (3), 231256. http://doi.org/10.1162/jocn.1996.8.3.231 Google Scholar
Yokoyama, S., Okamoto, H., Miyamoto, T., Yoshimoto, K., Kim, J., Iwata, K., Jeong, H., Uchida, S., Ikuta, N., Sassa, Y., Nakamura, W., Horie, K., Sato, S., & Kawashima, R. (2006). Cortical activation in the processing of passive sentences in L1 and L2: An fMRI study. NeuroImage, 30 (2), 570579. http://doi.org/10.1016/j.neuroimage.2005.09.066 Google Scholar