Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T05:49:45.072Z Has data issue: false hasContentIssue false

Genetic covariance between psychopathic traits and anticipatory skin conductance responses to threat: Evidence for a potential endophenotype

Published online by Cambridge University Press:  09 January 2015

Pan Wang*
Affiliation:
University of Southern California
Yu Gao
Affiliation:
Brooklyn College of the City University of New York
Joshua Isen
Affiliation:
University of Minnesota
Catherine Tuvblad
Affiliation:
University of Southern California
Adrian Raine
Affiliation:
University of Pennsylvania
Laura A. Baker
Affiliation:
University of Southern California
*
Address correspondence and reprint requests to: Pan Wang, University of Southern California, 3620 South McClintock Avenue, SGM 501, Los Angeles, CA 90089-1061; E-mail: panwang@usc.edu.

Abstract

The genetic architecture of the association between psychopathic traits and reduced skin conductance responses (SCRs) is poorly understood. By using 752 twins aged 9–10 years, this study investigated the heritability of two SCR measures (anticipatory SCRs to impending aversive stimuli and unconditioned SCRs to the aversive stimuli themselves) in a countdown task. The study also investigated the genetic and environmental sources of the covariance between these SCR measures and two psychopathic personality traits: impulsive/disinhibited (reflecting impulsive–antisocial tendencies) and manipulative/deceitful (reflecting the affective–interpersonal features). For anticipatory SCRs, 27%, 14%, and 59% of the variation was due to genetic, shared environmental, and nonshared environmental effects, respectively, while the percentages for unconditioned SCRs were 44%, 2%, and 54%. The manipulative/deceitful (not impulsive/disinhibited) traits were negatively associated with both anticipatory SCRs (r = –.14, p < .05) and unconditioned SCRs (r = –.17, p < .05) in males only, with the former association significantly accounted for by genetic influences (rg = –.72). Reduced anticipatory SCRs represent a candidate endophenotype for the affective–interpersonal facets of psychopathic traits in males.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åberg, E., Fandiño-Losada, A., Sjöholm, L. K., Forsell, Y., & Lavebratt, C. (2011). The functional Val158Met polymorphism in catechol-O-methyltransferase (COMT) is associated with depression and motivation in men from a Swedish population-based study. Journal of Affective Disorders, 129, 158166.Google Scholar
Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317332.Google Scholar
Arnett, P. A. (1997). Autonomic responsivity in psychopaths: A critical review and theoretical proposal. Clinical Psychology Review, 17, 903936.Google Scholar
Baker, L. A., Tuvblad, C., Reynolds, C., Zheng, M., Lozano, D. I., & Raine, A. (2009). Resting heart rate and the development of antisocial behavior from age 9 to 14: Genetic and environmental influences. Development and Psychopathology, 21, 939960.Google Scholar
Baker, L. A., Tuvblad, C., Wang, P., Gomez, K., Bezdjian, S., Niv, S., et al. (2013). The Southern California Twin Register at the University of Southern California: III. Twin Research and Human Genetics, 16, 336343.Google Scholar
Bechara, A., Tranel, D., Damasio, H., Adolphs, R., Rockland, C., & Damasio, A. R. (1995). Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science, 269, 11151118.Google Scholar
Bezdjian, S., Raine, A., Baker, L. A., & Lynam, D. R. (2011). Psychopathic personality in children: Genetic and environmental contributions. Psychological Medicine, 41, 589600.Google Scholar
Biederman, J., Kim, J. W., Doyle, A. E., Mick, E., Fagerness, J., Smoller, J. W., et al. (2008). Sexually dimorphic effects of four genes (COMT, SLC6A2, MAOA, SLC6A4) in genetic associations of ADHD: A preliminary study. American Journal of Medical Genetics, 147B, 15111518.Google Scholar
Blair, R. (2007). The amygdala and ventromedial prefrontal cortex in morality and psychopathy. Trends in Cognitive Sciences, 11, 387392.Google Scholar
Blair, R. J. R., Peschardt, K., Budhani, S., Mitchell, D., & Pine, D. (2006). The development of psychopathy. Journal of Child Psychology and Psychiatry, 47, 262276.Google Scholar
Blom, G. (1958). Statistical estimates and transformed beta-variables. New York: Wiley.Google Scholar
Crider, A., Kremen, W. S., Xian, H., Jacobson, K. C., Waterman, B., Eisen, S. A., et al. (2004). Stability, consistency, and heritability of electrodermal response lability in middle-aged male twins. Psychophysiology, 41, 501509.Google Scholar
Evans, D. M., Gillespie, N., & Martin, N. (2002). Biometrical genetics. Biological Psychology, 61, 3351.Google Scholar
Fairchild, G., Stobbe, Y., Van Goozen, S. H., Calder, A. J., & Goodyer, I. M. (2010). Facial expression recognition, fear conditioning, and startle modulation in female subjects with conduct disorder. Biological Psychiatry, 68, 272279.Google Scholar
Fairchild, G., Van Goozen, S. H., Stollery, S. J., & Goodyer, I. M. (2008). Fear conditioning and affective modulation of the startle reflex in male adolescents with early-onset or adolescence-onset conduct disorder and healthy control subjects. Biological Psychiatry, 63, 279285.Google Scholar
Flor, H., Birbaumer, N., Hermann, C., Ziegler, S., & Patrick, C. J. (2002). Aversive Pavlovian conditioning in psychopaths: Peripheral and central correlates. Psychophysiology, 39, 505518.Google Scholar
Fowles, D. C., & Dindo, L. (2009). Temperament and psychopathy: A dual-pathway model. Current Directions in Psychological Science, 18, 179183.Google Scholar
Fung, M. T., Raine, A., Loeber, R., Lynam, D. R., Steinhauer, S. R., Venables, P. H., et al. (2005). Reduced electrodermal activity in psychopathy-prone adolescents. Journal of Abnormal Psychology, 114, 187196.Google Scholar
Gao, Y., Glenn, A. L., Schug, R. A., Yang, Y., & Raine, A. (2009). The neurobiology of psychopathy: A neurodevelopmental perspective. Canadian Journal of Psychiatry, 54, 813823.Google Scholar
Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160, 636645.Google Scholar
Hare, R. D. (1978). Electrodermal and cardiovascular correlates of psychopathy. In Hare, R. D. & Schalling, D. (Eds.), Psychopathic behavior: Approaches to research (pp. 107143). Chichester: Wiley.Google Scholar
Hare, R. D. (1991). Manual for the Revised Psychopathy Checklist. Toronto: Multi-Health Systems.Google Scholar
Hare, R. D., Frazelle, J., & Cox, D. N. (1978). Psychopathy and physiological responses to threat of an aversive stimulus. Psychophysiology, 15, 165172.Google Scholar
Hare, R. D., & Thorvaldson, S. A. (1970). Psychopathy and response to electrical stimulation. Journal of Abnormal Psychology, 76, 370.Google Scholar
Hettema, J. M., Annas, P., Neale, M. C., Fredrikson, M., & Kendler, K. S. (2008). The genetic covariation between fear conditioning and self-report fears. Biological Psychiatry, 63, 587593.Google Scholar
Hettema, J. M., Annas, P., Neale, M. C., Kendler, K. S., & Fredrikson, M. (2003). A twin study of the genetics of fear conditioning. Archives of General Psychiatry, 60, 702.Google Scholar
Iacono, W. G. (1998). Identifying psychophysiological risk for psychopathology: Examples from substance abuse and schizophrenia research. Psychophysiology, 35, 621637.Google Scholar
Iacono, W. G., Carlson, S. R., & Malone, S. M. (2000). Identifying a multivariate endophenotype for substance use disorders using psychophysiological measures. International Journal of Psychophysiology, 38, 8196.CrossRefGoogle ScholarPubMed
Isen, J. D., Iacono, W. G., Malone, S. M., & McGue, M. (2012). Examining electrodermal hyporeactivity as a marker of externalizing psychopathology: A twin study. Psychophysiology, 49, 10391048.CrossRefGoogle ScholarPubMed
Isen, J. D., Raine, A., Baker, L., Dawson, M., Bezdjian, S., & Lozano, D. I. (2010). Sex-specific association between psychopathic traits and electrodermal reactivity in children. Journal of Abnormal Psychology, 119, 216.Google Scholar
Karayiorgou, M., Sobin, C., Blundell, M. L., Galke, B. L., Malinova, L., Goldberg, P., et al. (1999). Family-based association studies support a sexually dimorphic effect of COMT and MAOA on genetic susceptibility to obsessive–compulsive disorder. Biological Psychiatry, 45, 11781189.Google Scholar
LaBar, K. S., LeDoux, J. E., Spencer, D. D., & Phelps, E. A. (1995). Impaired fear conditioning following unilateral temporal lobectomy in humans. Journal of Neuroscience, 15, 68466855.CrossRefGoogle ScholarPubMed
Lenzenweger, M. F. (2013). Endophenotype, intermediate phenotype, biomarker: Definitions, concept comparisons, clarifications. Depression and Anxiety, 30, 185189.Google Scholar
López, R., Poy, R., Patrick, C. J., & Moltó, J. (2013). Deficient fear conditioning and self-reported psychopathy: The role of fearless dominance. Psychophysiology, 50, 210218.Google Scholar
Lykken, D. T. (1957). A study of anxiety in the sociopathic personality. Journal of Abnormal and Social Psychology, 55, 6.Google Scholar
Lykken, D., Iacono, W., Haroian, K., McGue, M., & Bouchard, T. (1988). Habituation of the skin conductance response to strong stimuli: A twin study. Psychophysiology, 25, 415.CrossRefGoogle ScholarPubMed
Lynam, D. R. (1997). Pursuing the psychopath: Capturing the fledgling psychopath in a nomological net. Journal of Abnormal Psychology, 106, 425438.CrossRefGoogle Scholar
Malkani, S., Wallace, K. J., Donley, M. P., & Rosen, J. B. (2004). An egr-1 (zif268) antisense oligodeoxynucleotide infused into the amygdala disrupts fear conditioning. Learning & Memory, 11, 617624.Google Scholar
Montag, C., Buckholtz, J. W., Hartmann, P., Merz, M., Burk, C., Hennig, J., et al. (2008). COMT genetic variation affects fear processing: Psychophysiological evidence. Behavioral Neuroscience, 122, 901909.Google Scholar
Muthén, L. K., & Muthén, B. O. (2007). Mplus user's guide (5th ed.). Los Angeles: Author.Google Scholar
Öhman, A., & Mineka, S. (2001). Fears, phobias, and preparedness: Toward an evolved module of fear and fear learning. Psychological Review, 108, 483.Google Scholar
Patrick, C. J., & Bernat, E. M. (2009). Neurobiology of psychopathy. In Berntson, G. G. & Cacioppo, J. T. (Eds.), Handbook of neuroscience for the behavioral sciences (2nd ed.). Hoboken, NJ: Wiley.Google Scholar
Patrick, C. J., Fowles, D. C., & Krueger, R. F. (2009). Triarchic conceptualization of psychopathy: Developmental origins of disinhibition, boldness, and meanness. Development and Psychopathology, 21, 913938. doi:10.1017/S0954579409000492 Google Scholar
Patrick, C. J., Hicks, B. M., Nichol, P. E., & Krueger, R. F. (2007). A bifactor approach to modeling the structure of the Psychopathy Checklist—Revised. Journal of Personality Disorders, 21, 118141.Google Scholar
Plomin, R., DeFries, J. C., McClearn, G. E., & McGuffin, P. (2008). Behavioral Genetics (5th ed.). New York: Worth.Google Scholar
Posthuma, D., Beem, A. L., De Geus, E. J., Van Baal, G. C. M., von Hjelmborg, J. B., Iachine, I., et al. (2003). Theory and practice in quantitative genetics. Twin Research, 6, 361376.Google Scholar
Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111164.Google Scholar
Rijsdijk, F. V., Viding, E., De Brito, S., Forgiarini, M., Mechelli, A., Jones, A. P., et al. (2010). Heritable variations in gray matter concentration as a potential endophenotype for psychopathic traits. Archives of General Psychiatry, 67, 406.Google Scholar
Rosen, J. B. (2004). The neurobiology of conditioned and unconditioned fear: A neurobehavioral system analysis of the amygdala. Behavioral and Cognitive Neuroscience Reviews, 3, 2341.Google Scholar
Rothemund, Y., Ziegler, S., Hermann, C., Gruesser, S. M., Foell, J., Patrick, C. J., et al. (2012). Fear conditioning in psychopaths: Event-related potentials and peripheral measures. Biological Psychology, 90, 5059.Google Scholar
SAS. (2008). SAS/STAT 9.2 user's guide. Cary, NC: Author.Google Scholar
Schalling, D. (1978). Psychopathy-related personality variables and the psychophysiology of socialization. In Hare, R. D. & Schalling, D. (Eds.), Psychopathic behavior: Approaches to research (pp. 85106). Chichester: Wiley.Google Scholar
Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87, 245.Google Scholar
Sylvers, P., Brubaker, N., Alden, S. A., Brennan, P. A., & Lilienfeld, S. O. (2008). Differential endophenotypic markers of narcissistic and antisocial personality features: A psychophysiological investigation. Journal of Research in Personality, 42, 12601270.Google Scholar
Tranel, D., Damasio, H., Denburg, N. L., & Bechara, A. (2005). Does gender play a role in functional asymmetry of ventromedial prefrontal cortex? Brain, 128, 28722881.Google Scholar
Tuvblad, C., Gao, Y., Isen, J., Botwick, T., Raine, A., & Baker, L. A. (2012). The heritability of the skin conductance orienting response: A longitudinal twin study. Biological Psychology, 89, 4753.Google Scholar
Tuvblad, C., Wang, P., Bezdjian, S., Raine, A., & Baker, L. (2014). Psychopathic personality development from ages 9 to 18: Genes and environment. Manuscript submitted for publication.Google Scholar
van den Oord, E. J., Simonoff, E., Eaves, L. J., Pickles, A., Silberg, J., & Maes, H. (2000). An evaluation of different approaches for behavior genetic analyses with psychiatric symptom scores. Behavior Genetics, 30, 118.Google Scholar
Viding, E., & Larsson, H. (2010). Genetics of child and adolescent psychopathy. In Randall, D. R. L. & Salekin, T. (Eds.), Handbook of child and adolescent psychopathy (pp. 113134). New York: Guilford Press.Google Scholar
Waldman, I. D., & Rhee, S. (2006). Genetic and environmental influences on psychopathy and antisocial behavior. In Patrick, C. J. (Ed.), Handbook of psychopathy (pp. 205228). New York: Guilford Press.Google Scholar
Walker, D. L., & Davis, M. (1997). Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in startle increases produced by conditioned versus unconditioned fear. Journal of Neuroscience, 17, 93759383.Google Scholar
Wang, P., Baker, L. A., Gao, Y., Raine, A., & Lozano, D. I. (2012). Psychopathic traits and physiological responses to aversive stimuli in children aged 9–11 years. Journal of Abnormal Child Psychology, 40, 759769.Google Scholar
Williams, L. M., Gatt, J. M., Kuan, S. A., Dobson-Stone, C., Palmer, D. M., Paul, R. H., et al. (2009). A polymorphism of the MAOA gene is associated with emotional brain markers and personality traits on an antisocial index. Neuropsychopharmacology, 34, 17971809.Google Scholar