Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-27T07:02:17.929Z Has data issue: false hasContentIssue false

Magnitude of Cognitive Dysfunction in Adults with Type 2 Diabetes: A Meta-analysis of Six Cognitive Domains and the Most Frequently Reported Neuropsychological Tests Within Domains

Published online by Cambridge University Press:  20 February 2014

Priya Palta
Affiliation:
Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, Maryland
Andrea L.C. Schneider
Affiliation:
Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, Maryland
Geert Jan Biessels
Affiliation:
Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center, Utrecht, The Netherlands
Pegah Touradji
Affiliation:
Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, Maryland
Felicia Hill-Briggs*
Affiliation:
Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, Maryland Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, Maryland Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
*
Correspondence and reprint requests to: Felicia Hill-Briggs, Welch Center for Prevention, Epidemiology and Clinical Research, 2024 East Monument Street, Suite 2-518, Baltimore, MD 21287. E-mail: fbriggs3@jhmi.edu

Abstract

The objectives were to conduct a meta-analysis in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards to determine effect sizes (Cohen's d) for cognitive dysfunction in adults with type 2 diabetes, relative to nondiabetic controls, and to obtain effect sizes for the most commonly reported neuropsychological tests within domains. Twenty-four studies, totaling 26,137 patients (n = 3351 with diabetes), met study inclusion criteria. Small to moderate effect sizes were obtained for five of six domains: motor function (3 studies, n = 2374; d = −0.36), executive function (12 studies, n = 1784; d = −0.33), processing speed (16 studies, n = 3076; d = −0.33), verbal memory (15 studies, n = 4,608; d = −0.28), and visual memory (6 studies, n = 1754; d = −0.26). Effect size was smallest for attention/concentration (14 studies, n = 23,143; d = −0.19). The following tests demonstrated the most notable performance decrements in diabetes samples: Grooved Pegboard (dominant hand) (d = −0.60), Rey Auditory Verbal Learning Test (immediate) (d = −0.40), Trails B (d = −0.39), Rey-Osterreith Complex Figure (delayed) (d = −0.38), Trails A (d = −0.34), and Stroop Part I (d = −0.28). This study provides effect sizes to power future epidemiological and clinical diabetes research studies examining cognitive function and to help inform the selection of neuropsychological tests. (JINS, 2014, 20, 1–14)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alosco, M.L., Brickman, A.M., Spitznagel, M.B., Griffith, E.Y., Narkhede, A., Raz, N., Gunstad, J. (2013). The adverse impact of type 2 diabetes on brain volume in heart failure. Journal of Clinical and Experimental Neuropsychology, 35(3), 30 9318.CrossRefGoogle ScholarPubMed
American Diabetes Association (ADA). (2013). Standards of medical care in diabetes-2013. Diabetes Care, 36(Suppl. 1), S11S66.Google Scholar
Atiea, J.A., Moses, J.L., Sinclair, A.J. (1995). Neuropsychological function in older subjects with non-insulin-dependent diabetes mellitus. Diabetic Medicine, 12(8), 679685.CrossRefGoogle ScholarPubMed
Banks, W.A., Owen, J.B., Erickson, M.A. (2012). Insulin in the brain: There and back again. Pharmacology & Therapeutics, 136(1), 8293.CrossRefGoogle Scholar
Biessels, G.J., Staekenborg, S., Brunner, E., Brayne, C., Scheltens, P. (2006). Risk of dementia in diabetes mellitus: A systematic review. Lancet Neurology, 5(1), 6474.CrossRefGoogle ScholarPubMed
Brands, A.M., Van den Berg, E., Manschot, S.M., Biessels, G.J., Kappelle, L.J., De Haan, E.H., Kessels, R.P. (2007). A detailed profile of cognitive dysfunction and its relation to psychological distress in patients with type 2 diabetes mellitus. Journal of the International Neuropsychological Society, 13(2), 288297.Google Scholar
Christman, A.L., Vannorsdall, T.D., Pearlson, G.D., Hill-Briggs, F., Schretlen, D.J. (2010). Cranial volume, mild cognitive deficits, and functional limitations associated with diabetes in a community sample. Archives of Clinical Neuropsychology, 25(1), 4959.CrossRefGoogle Scholar
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
Cukierman, T., Gerstein, H.C., Williamson, J.D. (2005). Cognitive decline and dementia in diabetes – systematic overview of prospective observational studies. Diabetologia, 48(12), 24602469.CrossRefGoogle ScholarPubMed
De Jong, R.N. (1950). The nervous system complications in diabetes mellitus with special reference to cerebrovascular changes. The Journal of Nervous and Mental Disease, 111, 181206.CrossRefGoogle Scholar
Espeland, M.A., Miller, M.E., Goveas, J.S., Hogan, P.E., Coker, L.H., Williamson, J., Resnick, S.M. (2011). Cognitive function and fine motor speed in older women with diabetes mellitus: Results from the women's health initiative study of cognitive aging. Journal of Women's Health, 20(10), 14351443.Google Scholar
Gold, S.M., Dziobek, I., Sweat, V., Tirsi, A., Rogers, K., Bruehl, H., Convit, A. (2007). Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia, 50(4), 711719.Google Scholar
Golden, S.H., Brown, A., Cauley, J.A., Chin, M.H., Gary-Webb, T.L., Kim, C., Anton, B. (2012). Health disparities in endocrine disorders: Bological, clinical, and nonclinical factors--an Endocrine Society scientific statement. Journal of Clinical Endocrinology and Metabolism, 97(9), E 1579E1639.CrossRefGoogle Scholar
Gregg, E.W., Yaffe, K., Cauley, J.A., Rolka, D.B., Blackwell, T.L., Narayan, K.M., Cummings, S.R. (2000). Is diabetes associated with cognitive impairment and cognitive decline among older women? Study of Osteoporotic Fractures Research Group. Archives of Internal Medicine, 160(2), 174180.Google Scholar
Gur, R.C., Turetsky, B.I., Matsui, M., Yan, M., Bilker, W., Hughett, P., Gur, R.E. (1999). Sex differences in brain gray and white matter in healthy young adults: Correlations with cognitive performance. The Journal of Neuroscience, 19(10), 40654072.CrossRefGoogle ScholarPubMed
Hassing, L.B., Grant, M.D., Hofer, S.M., Pedersen, N.L., Nilsson, S.E., Berg, S., Johansson, B. (2004). Type 2 diabetes mellitus contributes to cognitive decline in old age: A longitudinal population-based study. Journal of the International Neuropsychological Society, 10(4), 59 9607.Google Scholar
Helkala, E.L., Niskanen, L., Viinamaki, H., Partanen, J., Uusitupa, M. (1995). Short-term and long-term memory in elderly patients with NIDDM. Diabetes Care, 18(5), 681685.Google Scholar
Higgins, J.P., Thompson, S.G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21(11), 15391558.CrossRefGoogle ScholarPubMed
Hugenschmidt, C.E., Hsu, F.C., Hayasaka, S., Carr, J.J., Freedman, B.I., Nyenhuis, D.L., Bowden, D.W. (2013). The influence of subclinical cardiovascular disease and related risk factors on cognition in type 2 diabetes mellitus: The DHS-Mind study. Journal of Diabetes and its Complications. doi:10.1016/j.jdiacomp.2013.04.004 CrossRefGoogle ScholarPubMed
International Diabetes Federation (IDF). (2013). International Diabetes Federation (IDF) Atlas (5th ed). Alexandria, VA: International Diabetes Federation.Google Scholar
Jacobson, A.M. (2011). Diabetes and cognitive performance: A story that is still unfolding. Diabetologia, 54(7), 15931595.CrossRefGoogle Scholar
Kanaya, A.M., Barrett-Connor, E., Gildengorin, G., Yaffe, K. (2004). Change in cognitive function by glucose tolerance status in older adults: A 4-year prospective study of the Rancho Bernardo study cohort. Archives of Internal Medicine, 164(12), 13271333.Google Scholar
Kawamura, T., Umemura, T., Hotta, N. (2012). Cognitive impairment in diabetic patients: Can diabetic control prevent cognitive decline? Journal of Diabetes Investigation, 3(5), 413423.CrossRefGoogle ScholarPubMed
Kodl, C.T., Seaquist, E.R. (2008). Cognitive dysfunction and diabetes mellitus. Endocrine Reviews, 29(4), 494511.CrossRefGoogle ScholarPubMed
Koekkoek, P.S., Ruis, C., van den Donk, M., Biessels, G.J., Gorter, K.J., Kappelle, L.J., Rutten, G.E. (2012). Intensive multifactorial treatment and cognitive functioning in screen-detected type 2 diabetes – the ADDITION-Netherlands study: A cluster- randomized trial. Journal of the Neurological Sciences, 314(1–2), 7177.Google Scholar
Kumar, R., Anstey, K.J., Cherbuin, N., Wen, W., Sachdev, P.S. (2008). Association of type 2 diabetes with depression, brain atrophy, and reduced fine motor speed in a 60- to 64-year-old community sample. American Journal of Geriatric Psychiatry, 16(12), 989998.CrossRefGoogle Scholar
Kumar, R., Looi, J.C.L., Raphael, B. (2009). Type 2 diabetes mellitus, cognition and brain in aging: A brief review. Indian J Psychiatry, 51(Suppl1), S35S38.Google Scholar
Larrabee, G.J., Millis, S.R., Meyers, J.E. (2008). Sensitivity to brain dysfunction of the Halstead-Reitan vs. an ability focused neuropsychological battery. The Clinical Neuropsychologist, 22, 813825.CrossRefGoogle ScholarPubMed
Lezak, M.D., Howieson, D.B., Loring, D.W. (2004). Neuropsychological assessment (4th ed.). New York, NY: Oxford University Press, Inc.Google Scholar
Lindeman, R.D., Romero, L.J., LaRue, A., Yau, C.L., Schade, D.S., Koehler, K.M., Garry, P.J. (2001). A biethnic community survey of cognition in participants with type 2 diabetes, impaired glucose tolerance, and normal glucose tolerance: The New Mexico Elder Health Survey. Diabetes Care, 24(9), 15671572.CrossRefGoogle ScholarPubMed
Logroscino, G., Kang, J.H., Grodstein, F. (2004). Prospective study of type 2 diabetes and cognitive decline in women aged 70–81 years. British Medical Journal, 328(7439), 548.Google Scholar
Loring, D.W., Strauss, E., Hermann, B.P., Barr, W.B., Perrine, K., Trenerry, M.R., Bowden, S.C. (2008). Differential neuropsychological test sensitivity to left temporal lobe epilepsy. Journal of the International Neuropsychological Society, 14(3), 394400.Google Scholar
Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., Memish, Z.A. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380(9859), 20952128.Google Scholar
Lyketsos, C.G., Chen, L.S., Anthony, J.C. (1999). Cognitive decline in adulthood: An 11.5-year follow-up of the Baltimore Epidemiologic Catchment Area study. The American Journal of Psychiatry, 156(1), 5865.Google Scholar
Manly, J.J., Jacobs, D.M., Sano, M., Bell, K., Merchant, C.A., Small, S.A., Stern, Y. (1998). Cognitive test performance among nondemented elderly African Americans and whites. Neurology, 50(5), 12381245.Google Scholar
McCrimmon, R.J., Ryan, C.M., Frier, B.M. (2012). Diabetes and cognitive dysfunction. Lancet, 379(9833), 22912299.Google Scholar
Mogi, N., Umegaki, H., Hattori, A., Maeda, N., Miura, H., Kuzuya, M., Iguchi, A. (2004). Cognitive function in Japanese elderly with type 2 diabetes mellitus. Journal of Diabetes and its Complications, 18(1), 4246.CrossRefGoogle ScholarPubMed
Murray, C.J., Vos, T., Lozano, R., Naghavi, M., Flaxman, A.D., Michaud, C., Memish, Z. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380(9859), 21972223.CrossRefGoogle ScholarPubMed
Mussell, M., Hewer, W., Kulzer, B., Bergis, K., Rist, F. (2004). Effects of improved glycaemic control maintained for 3 months on cognitive function in patients with Type 2 diabetes. Diabetic Medicine, 21(11), 12531256.Google Scholar
National Institutes of Health (2011). Advances and emerging opportunities in diabetes research: A strategic planning report of the Diabetes Mellitus Interagency Coordinating Committee. Bethesda, MD: National Institutes of Health.Google Scholar
Rabin, L.A., Barr, W.B., Burton, L.A. (2005). Assessment practices of clinical neuropsychologists in the United States and Canada: A survey of INS, NAN, and APA Division 40 members. Archives of Clinical Neuropsychology, 20(1), 3365.CrossRefGoogle Scholar
Reijmer, Y.D., Brundel, M., de Bresser, J., Kappelle, L.J., Leemans, A., Biessels, G.J. (2013). Microstructural white matter abnormalities and cognitive functioning in type 2 diabetes. Diabetes Care, 36, 137144.Google Scholar
Reijmer, Y.D., van den Berg, E., Ruis, C., Kappelle, L.J., Biessels, G.J. (2010). Cognitive dysfunction in patients with type 2 diabetes. Diabetes/Metabolism Research and Reviews, 26(7), 507519.Google Scholar
Ryan, C.M. (2006). Diabetes and brain damage: more (or less) than meets the eye? Diabetologia, 49(10), 22292233.Google Scholar
Ryan, C.M., Geckle, M.O. (2000). Circumscribed cognitive dysfunction in middle-aged adults with type 2 diabetes. Diabetes Care, 23(10), 14861493.CrossRefGoogle ScholarPubMed
Ryan, C.M., Williams, T.M., Orchard, T.J., Finegold, D.N. (1992). Psychomotor slowing is associated with distal symmetrical polyneuropathy in adults with diabetes mellitus. Diabetes, 41(1), 107113.Google Scholar
Spreen, O., Strauss, E. (1998). A compendium of neuropsychological tests: Administration, norms and commentary (2nd ed.). New York, New York: Oxford University Press.Google Scholar
Strachan, M.W., Deary, I.J., Ewing, F.M., Frier, B.M. (1997). Is type II diabetes associated with an increased risk of cognitive dysfunction? A critical review of published studies. Diabetes Care, 20(3), 438445.Google Scholar
Strachan, M.W., Frier, B.M., Deary, I.J. (1997). Cognitive assessment in diabetes: The need for consensus. Diabetic Medicine, 14(6), 421422.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Takeuchi, A., Matsushima, E., Kato, M., Konishi, M., Izumiyama, H., Murata, Y., Hirata, Y. (2012). Characteristics of neuropsychological functions in inpatients with poorly-controlled type 2 diabetes mellitus. Journal of Diabetes Investigation, 3(3), 325330.CrossRefGoogle ScholarPubMed
Toro, P., Schonknecht, P., Schroder, J. (2009). Type II diabetes in mild cognitive impairment and Alzheimer's disease: Results from a prospective population-based study in Germany. Journal of Alzheimers Disease, 16(4), 687691.CrossRefGoogle ScholarPubMed
van den Berg, E., de Craen, A.J., Biessels, G.J., Gussekloo, J., Westendorp, R.G. (2006). The impact of diabetes mellitus on cognitive decline in the oldest of the old: A prospective population-based study. Diabetologia, 49(9), 20152023.CrossRefGoogle Scholar
van den Berg, E., Dekker, J.M., Nijpels, G., Kessels, R.P., Kappelle, L.J., de Haan, E.H., Biessels, G.J. (2008). Cognitive functioning in elderly persons with type 2 diabetes and metabolic syndrome: The Hoorn study. Dementia Geriatric Cognitive Disorders, 26(3), 261269.CrossRefGoogle ScholarPubMed
van den Berg, E., Kessels, R.P., Kappelle, L.J., de Haan, E.H., Biessels, G.J. (2006). Type 2 diabetes, cognitive function and dementia: vascular and metabolic determinants. Drugs of Today, 42(11), 741754.CrossRefGoogle ScholarPubMed
van Harten, B., Oosterman, J., Muslimovic, D., van Loon, B.J., Scheltens, P., Weinstein, H.C. (2007). Cognitive impairment and MRI correlates in the elderly patients with type 2 diabetes mellitus. Age Ageing, 36(2), 164170.CrossRefGoogle ScholarPubMed
Vanhanen, M., Karhu, J., Koivisto, K., Paakkonen, A., Partanen, J., Laakso, M., Riekkinen, P. Sr. (1996). ERPs reveal deficits in automatic cerebral stimulus processing in patients with NIDDM. Neuroreport, 7(15–17), 27672771.Google Scholar
Vanhanen, M., Kuusisto, J., Koivisto, K., Mykkanen, L., Helkala, E.L., Hanninen, T., Laakso, M. (1999). Type-2 diabetes and cognitive function in a non-demented population. Acta Neurologica Scandinavica, 100(2), 97101.Google Scholar
von Elm, E., Altman, D.G., Egger, M., Pocock, S.J., Gotzsche, P.C., Vandenbroucke, J.P. (2007). The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Annals of Internal Medicine, 147(8), 573577.Google Scholar
Watari, K., Letamendi, A., Elderkin-Thompson, V., Haroon, E., Miller, J., Darwin, C., Kumar, A. (2006). Cognitive function in adults with type 2 diabetes and major depression. Archives of Clinical Neuropsychology, 21(8), 787796.Google Scholar
Whitmer, R.A. (2007). Type 2 diabetes and risk of cognitive impairment and dementia. Current Neurology and Neuroscience Reports, 7(5), 373380.Google Scholar
Williamson, J.D., Miller, M.E., Bryan, R.N., Lazar, R.M., Coker, L.H., Johnson, J., Launer, L.J. (2007). The action to control cardiovascular risk in diabetes memory in diabetes study (ACCORD-MIND): rationale, design, and methods. Am J Cardiol, 99(12A), 112i122i.CrossRefGoogle ScholarPubMed
Zakzanis, K.K. (2001). Statistics to tell the truth, the whole truth, and nothing but the truth: Formulae, illustrative numerical examples, and heuristic interpretation of effect size analyses for neuropsychological researchers. Archives of Clinical Neuropsychology, 16(7), 653667.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Palta Supplementary Material

Supplementary Material

Download Palta Supplementary Material(PDF)
PDF 699.7 KB