Skip to main content
Log in

Cytoarchitectural and metabolic adaptations in muscles with mitochondrial and cytosolic creatine kinase deficiencies

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We have blocked creatine kinase (CK) mediated phosphocreatine (PCr) ⇄ ATP transphosphorylation in mitochondria and cytosol of skeletal muscle by knocking out the genes for the mitochondrial (ScCKmit) and the cytosolic (M-CK) CK isoforms in mice. Animals which carry single or double mutations, if kept and tested under standard laboratory conditions, have surprisingly mild changes in muscle physiology. Strenuous ex vivo conditions were necessary to reveal that MM-CK absence in single and double mutants leads to a partial loss of tetanic force output. Single ScCKmit deficiency has no noticeable effects but in combination the mutations cause slowing of the relaxation rate. Importantly, our studies revealed that there is metabolic and cytoarchitectural adaptation to CK defects in energy metabolism. The effects involve mutation type-dependent alterations in the levels of AMP, IMP, glycogen and phosphomonoesters, changes in activity of metabolic enzymes like AMP-deaminase, alterations in mitochondrial volume and contractile protein (MHC isoform) profiles, and a hyperproliferation of the terminal cysternae of the SR (in tubular aggregates). This suggests that there is a compensatory resiliency of loss-of-function and redirection of flux distributions in the metabolic network for cellular energy in our mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bessmann SP, Carpenter LC: The creatine-creatine phosphate energy shuttle. Annu Rev Biochem 54: 831–862, 1985

    Google Scholar 

  2. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM: Intracellular compartmentalization, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The phosphocreatine circuit for cellular energy homeostasis. Biochem J 281: 21–40, 1992

    Google Scholar 

  3. Miller DS, Horowitz SB: Intracellular compartmentalization of adenosine triphosphate. J Biol Chem 261: 13911–13915, 1986

    Google Scholar 

  4. Saks VA, Khuchua ZA, Vasilyeva EV, Belikova OY, Kuznetsov AV: Metabolic compartmentalization and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration–a synthesis. Mol Cell Biochem 133/134: 155–192, 1994

    Google Scholar 

  5. Han J-W, Thieleczek R, Varsányi M, Heilmeyer LMG: Compartmentalized ATP synthesis in skeletal muscle triads. Biochemistry 31: 377–384, 1992

    Google Scholar 

  6. Rossi AM, Eppenberger HM, Volpe P, Cotrufo R, Wallimann T: Muscletype MM creatine kinase is specifically bound to sarcoplasmic reticulum and can support Ca2+ uptake and regulate local ATP/ADP ratios. J Biol Chem 265: 5258–5266, 1990

    Google Scholar 

  7. Hardin C, Raeymakers L, Paul RJ: Comparison of endogenous and exogenous sources of ATP in fuelling Ca uptake in smooth muscle plasma membrane vesicles. J Gen Physiol 99: 21–40, 1992

    Google Scholar 

  8. Korge P, Campbell KB: Local ATP regeneration is important for sarcoplasmic reticulum Ca2+ pump function. Am J Physiol 267: C357–C366, 1994

    Google Scholar 

  9. Minajeva A, Ventura-Clapier R, Veksler V: Ca2+ uptake by cardiac sarcoplasmic reticulum ATPase in situ strongly depends on bound creatine kinase. Pfügers Arch Eur J Physiol 432: 904–912, 1996

    Google Scholar 

  10. Erecinska M, Wilson D: Regulation of cellular energy metabolism. J Membr Biol 70: 1–14, 1982

    Google Scholar 

  11. Balaban RS: Regulation of oxidative phosphorylation in the mammalian cell. Am J Physiol 258: C377–C389, 1990

    Google Scholar 

  12. Sistermans EA: Murine creatine kinase B: Cell-Type Specific Expression and Biochemical Role. Ph.D. Thesis, University Nijmegen, 1996

  13. Steeghs K: Consequences of Creatine Kinase Deficiencies in Mice. Ph.D. Thesis, University of Nijmegen, 1995

  14. Brdiczka D, Wallimann T: The importance of the outer mitochondrial compartment in regulation of energy metabolism. Mol Cell Biochem 133/134: 69–83, 1994

    Google Scholar 

  15. Fritz-Wolf K, Schnyder T, Wallimann T, Kabsch W: Structure of mitochondrial creatine kinase. Nature 381: 341–345, 1996

    Google Scholar 

  16. Jaenisch R: Transgenic animals. Science 240: 1468–1474, 1988

    Google Scholar 

  17. Thomas KR, Capecchi MR: Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51: 503–512, 1987

    Google Scholar 

  18. Brandon EP, Idzerda RL, McKnight GS: Targeting the mouse genome: A compendium of knockouts. Curr Biol 5: 625, 758 and 873, 1995

    Google Scholar 

  19. Capecchi MR: The new mouse transgenetics: Altering the genome by gene targeting. Trends Genet 5: 70–76, 1989

    Google Scholar 

  20. Evans MJ: Potential for genetic manipulation of mammals. Mol Biol Med 6: 557–565, 1989

    Google Scholar 

  21. Joyner AL: Gene targeting and gene trap screens using embryonic stem cells: New approaches to mammalian development. Bioessays 13: 649–656, 1991

    Google Scholar 

  22. Rossant J: Gene disruption in mammals. Curr Opin Genet Dev 1: 236–240, 1991

    Google Scholar 

  23. Smithies O: Animal models of human genetic diseases. Trends Genet 9: 112–117, 1993

    Google Scholar 

  24. Satoh S, Tanaka A, Hatano E, Inomoto T, Iwata S, Kitai T, Shinohara H, Tsunekawa S, Chance B, Yamaoka Y: Energy metabolism and regeneration in transgenic mouse liver expressing creatine kinase after major hepatectomy. Gastroenterology 110: 1166–1174, 1996

    Google Scholar 

  25. Koretsky AP: Insights into cellular energy metabolism from transgenic mice. Physiol Rev 75: 667–688, 1995

    Google Scholar 

  26. Brosnan MJ, Chen L, Van Dyke TA, Koretsky AP: Free ADP levels in transgenic mouse liver expressing creatine kinase: Effects of enzyme activity, phosphagen type, and substrate concentration. J Biol Chem 265: 20849–20855, 1990

    Google Scholar 

  27. Brosnan MJ, Raman SP, Chen L, Koretsky AP: Altering creatine kinase isoenzymes in transgenic mouse muscle by overexpression of the B subunit. Am J Physiol 264: C151–C160, 1993

    Google Scholar 

  28. Van Deursen J, Heerschap A, Oerlemans F, Ruitenbeek W, Jap P, ter Laak H, Wieringa B: Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity. Cell 74: 621–631, 1993

    Google Scholar 

  29. Van Deursen J, Ruitenbeek W, Heerschap A, Jap P, ter Laak H, Wieringa B: Creatine kinase in skeletal muscle energy metabolism: a study of mouse mutants with graded reduction in M-CK expression. Proc Natl Acad Sci USA 91: 9091–9095, 1994

    Google Scholar 

  30. Steeghs K, Peters W, Croes H, Bruckwilder M, van Alewijck D, Wieringa B: Mouse ubiquitous mitochondrial creatine kinase: Gene organization and consequences from inactivation in mouse embryonic stem cells. ONA Cell Biol 14: 539–553, 1995

    Google Scholar 

  31. Steeghs K, Heerschap A, de Haan A, Ruitenbeek W, Oerlemans F, van Deursen J, Perryman B, Pette D, Bruckwilder M, Koudijs J, Wieringa B: Use of gene targeting for compromising energy homeostasis in neuromuscular tissues: The role for sarcomeric mitochondrial creatine kinase. J Neurosci Meth 71: 29–41, 1997

    Google Scholar 

  32. Levitsky DO, Levchenko TS, Saks VA, Sharov VG, Smirnov VN: The role of creatine phosphokinase in supplying energy for the calcium pump system of heart sarcoplasmic reticulum. Membr Biochem 2: 81–96, 1978

    Google Scholar 

  33. Saks VA, Lipina NV, Sharov VG, Smirnov VA, Chazov EI, Grosse R: The localization of MM-isoenzyme of creatine kinase on the surface membrane of myocardial cells and its functional coupling to ouabain-inhibited Na+/K+ ATPase. Biochim Biophys Acta 465: 550–558, 1977

    Google Scholar 

  34. Grosse R, Spitzer E, Kupriyanov VV, Saks VA, Repke KRH: Coordinate interplay between (Na+/K+)-ATPase and CK optimizes (Na+/K+)-antiport across the membrane of vesicles formed from the plasma membrane of cardiac muscle cells. Biochim Biophys Acta 603: 142–156, 1980

    Google Scholar 

  35. Wegmann G, Zanolla E, Eppenberger HM, Wallimann T: In situ compartmentalization of creatine kinase in intact sarcomeric muscle: The acto-myosin overlap zone as a molecular sieve. J Muscle Res Cell Motil 13: 420–435, 1992

    Google Scholar 

  36. Turner DC, Wallimann T, Eppenberger HM: A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase. Proc Natl Acad Sci USA 70: 702–705, 1973

    Google Scholar 

  37. Ventura-Clapier R, Saks VA, Vassort G, Lauer C, Elizarova GV: Reversible MM-creatine kinase binding to cardiac muscle. Am J Physiol 253: C444–C455, 1987

    Google Scholar 

  38. Ventura-Clapier R, Veksler V, Hoerter JA: Myofibrillar creatine kinase and cardiac contraction. Mol Cell Biochem 133/134: 125–144, 1994

    Google Scholar 

  39. Sata M, Ugiura S, Yamashita H, Momomura S-i, Serizawa T: Coupling between myosin ATPase cycle and creatine kinase cycle facilitates cardiac actomysin sliding in vitro. Circulation 93: 310–317, 1996

    Google Scholar 

  40. Wyss M, Smeitink J, Wevers R, Wallimann T: Mitochondrial creatine kinase: A key enzyme of aerobic energy metabolism. Biochim Biophys Acta 1102: 119–166, 1992

    Google Scholar 

  41. Zeleznikar RJ, Dzeja PP, Goldberg ND: Adenylate kinase-catalyzed phosphoryl transfer couples ATP utilization with its generation by glycolysis in intact muscle. J Biol Chem 270: 7311–7319, 1995

    Google Scholar 

  42. Steeghs K, Benders A, Oerlemans F, de Haan A, Heerschap A, Ruitenbeek W, Jost C, van Deursen J, Perryman B, Pette D, Bruckwilder M, Koudijs J, Jap P, Veerkamp J, Wieringa B: Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell 89: 93–103, 1997

    Google Scholar 

  43. Kramer K, van Acker SABE, Voss H-P, Grimbergen JA, van der Vijgh WJF, Bast A: Use of telemetry to record electrocardiogram and heart rate in freely moving mice. J Pharmacol Toxicol Meth 30: 209–215, 1993

    Google Scholar 

  44. Wan R, Diamant M, de Jong W, De Wied D: Changes in heart rate and body temperature during passive avoidance behaviour in rats. Physiol Behavior 47: 493–499, 1990

    Google Scholar 

  45. Gerlai R: Gene-targeting studies of mammalian behavior: Is it the mutation or the background genotype? TINS 19: 177–190, 1996

    Google Scholar 

  46. Dubowitz V: Muscle Biopsy: A Practical Approach. Lavenham Press, Lavenham, England, 1985

    Google Scholar 

  47. Biermans W, Bakker A, Jacob W: Contact sites between inner and outer mitochondrial membrane: A dynamic microcompartment for creatine kinase. Biochim Biophys Acta 1018: 225–228, 1990

    Google Scholar 

  48. Bakker A, Bernaert I, De Bie M, Ravingerova T, Ziegelhöffer A, Van Belle H, Jacob W: The effect of calcium on the mitochondrial contact sites: A study on isolated rat hearts. Biochim Biophys Acta 1224: 583–588, 1994

    Google Scholar 

  49. Baddeley AJ, Gundersen HJG, Cruz-Orive LM: Estimation of surface area from vertical sections. J Microscopy 142: 259–276, 1986

    Google Scholar 

  50. Salviati G, Pierobon-Bormioli S, Betto R, Damiani E, Angelini C, Ringel SP, Salvatori S, Margreth A: Tubular aggregates: Sarcoplasmic reticulum origin, calcium storage ability, and functional implications. Muscle and Nerve 8: 299–306, 1985

    Google Scholar 

  51. Hoffman EP, Lehmann-Horn F, Rudel R: Overexcited or inactive: Ion channels in muscle disease. Cell 80: 681–686, 1995

    Google Scholar 

  52. Meijer AEFH: Histochemical features of tubular aggregates in diseased human skeletal muscle fibers. J Neurol Sciences 86: 73–82, 1988

    Google Scholar 

  53. Rosenberg NL, Neville HE, Ringel SP: Tubular aggregates, their association with neuromuscular diseases, including the syndrome of myalgias/cramps. Arch Neurol 42: 973–976, 1985

    Google Scholar 

  54. Craig ID, Allen IV: Tubular aggregates in murine dystrophy heterozygotes. Muscle Nerve 3: 134–140, 1980

    Google Scholar 

  55. Kuncl RW, Pestronk A, Lane J, Alexander E: The MRL +/+ mouse: A new model of tubular aggregates which are gender-and age related. Acta Neuropathol 78: 615–620, 1989

    Google Scholar 

  56. Stephanopoulos G, Vallino JJ: Network rigidity and metabolic engineering in metabolite overproduction. Science 252: 1675–1681, 1991

    Google Scholar 

  57. Tullson PC, Arabadjis PG, Rundell KW, Terjung RL: IMP reamination in rat skeletal muscle fiber types. Am J Physiol 270: C1069–C1074 (Cell Physiol. 39), 1996

    Google Scholar 

  58. Sahlin K, Gorski J, Edstrom L: Influence of ATP turnover and metabolite changes on IMP formation and glycolysis in rat skeletal muscle. Am J Physiol 259: C409–C412 (3 Pt 1), 1990

    Google Scholar 

  59. Tullson PC, Wieringa B, Terjung RL: Skeletal muscle creatine kinase deficiency decreases AMP deaminase activity and apparent molecular weight. Med Sci Sports Exer 28: S76, 1996

    Google Scholar 

  60. Tullson PC, Rundell KW, Sabina RL, Terjung RL: Treatment with the creatine analog β-guanidinoproprionic acid alters skeletal muscle AMP deaminase activity in vitro and in vivo. Am J Physiol 270: C76–C85 (Cell Physiol), 1996

    Google Scholar 

  61. Sweeney HL, Kushmerick MJ, Mabuchi K, Sreter FA, Gergely J: Myosin alkali light chain and heavy chain variations correlate with altered shortening velocity of isolated skeletal muscle fibers. J Biol Chem 263: 9034–9039, 1988

    Google Scholar 

  62. Pette D, Vrbova G: Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev Physiol Biochem Pharmacol 120: 115–202, 1992

    Google Scholar 

  63. Van Deursen J, Wieringa B: Targeting of the creatine kinase M gene in embryonic stem cells using isogenic and nonisogenic vectors. Nucl Acids Res 20: 3815–3820, 1992

    Google Scholar 

  64. Heerschap A, Bergman AH, Vaals JJ, Wirtz P, Loermans HMT, Veerkamp JH: Alterations in relative phosphocreatine concentrations in preclinical mouse muscular dystrophy revealed by in vivo NMR. NMR Biomed 1: 27–31, 1988

    Google Scholar 

  65. Heerschap A, van Vaals JJ, Bergman AH, Den Boer JH, van Gerwen PHJ, Gravenmade EJ: In vivo 31P-NMR studies of rat salivary glands. Magn Reson Med 8: 129, 1988

    Google Scholar 

  66. De Haan A, Jones DA, Sargeant AJ: Changes in velocity of shortening, power output and relaxation rate during fatigue of rat medial gastrocnemius. Pflügers Arch 413: 422–428, 1989

    Google Scholar 

  67. Edwards RHT, Hill DK, Jones DA: Metabolic changes associated with the slowing of relaxation in fatigued mouse muscle. J Physiol 251: 287–301, 1975

    Google Scholar 

  68. Hämäläinen N, Pette D. The histochemical profiles of fast fiber types JIB, IID, and IIA in skeletal muscles of mouse, rat, and rabbit. J Histochem Cytochem 41: 733–743, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steeghs, K., Oerlemans, F., de Haan, A. et al. Cytoarchitectural and metabolic adaptations in muscles with mitochondrial and cytosolic creatine kinase deficiencies. Mol Cell Biochem 184, 183–194 (1998). https://doi.org/10.1023/A:1006811717709

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006811717709

Navigation