Skip to main content
Log in

Chronic Effects of Xanthines on Levels of Central Receptors in Mice

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1.Chronic ingestion of caffeine causes a significant increase in levels of A1-adenosine, nicotinic and muscarinic receptors, serotonergic receptors, GABAA receptors and L-type calcium channels in cerebral cortical membranes from mice NIH Swiss strain mice.

2.Chronic theophylline and paraxanthine had effects similar to those of caffeine except that levels of L-type channels were unchanged. Chronic theobromine, a weak adenosine antagonist, and 1-isobutyl-3-methylxanthine (IBMX), a potent adenosine antagonist and phosphodiesterase inhibitor, caused only an increase in levels of A1-adenosine receptors. A combination of chronic caffeine and IBMX had the same effects on receptors as caffeine alone. Chronic 3,7-dimethyl-1-propargylxanthine (DMPX), a somewhat selective A2A-antagonist, caused only an increase in levels of A1-adenosine receptors. Pentoxyfylline, an adenosine-uptake inhibitor inactive at adenosine receptors, had no effect on receptor levels or calcium channels.

3.A comparison of plasma and brain levels of xanthines indicated that caffeine penetrated more readily and attained somewhat higher brain levels than theophylline or theobromine. Penetration and levels were even lower for IBMX, paraxanthine, DMPX, and pentoxyfylline.

4.The results suggest that effective blockade of both A1 and A2A-adenosine receptors is necessary for the full spectrum of biochemical changes elicited by chronic ingestion of xanthines, such as caffeine, theophylline, and paraxanthine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Biaggioni, I., Paul, S., and Robinson, D. (1988). A simple liquid chromatographic method applied to determine caffeine in plasma and tissues. Clin. Chem. 34:2345–2348.

    Google Scholar 

  • Bona, E., Ådén, U., Fredholm, B. B., and Hagberg, H.(1995). The effect of long term caffeine treatment on hypoxic-ischemic brain damage. Pediatr. Res. 38:312–318.

    Google Scholar 

  • Boulenger, J. P., Patel, J., Post, R. M., Parma, A. M., and Marangos, P. J. (1983). Chronic caffeine consumption increases the number of brain adenosine receptors. Life Sci. 32:1135–1142.

    Google Scholar 

  • Choi, O. H., Shamim, M. T., Padgett, W. L., and Daly, J. W.(1988). Caffeine and theophylline analogues: Correlation of behavioral effects with activity as adenosine receptor antagonists and as phosphodiesterase inhibitors. Life Sci. 36:2347–2358.

    Google Scholar 

  • Daly, J. W. (1993). Mechanism of action of caffeine. In Garattini, S. (Ed.), Caffeine, Coffee and Health. Raven Press, New York, pp. 97–150.

    Google Scholar 

  • Daly, J. W., and Fredholm, B. B. (1998). Caffeine—an atypical drug of dependence. Drug Alcohol Depend. 51:199–206.

    Google Scholar 

  • Daly, J. W., Shi, D., Nikodijević, O., and Jacobson, K. A. (1994). The role of adenosine receptors in the centrol action of caffeine. Pharmacopsychoecologia 7:201–213.

    Google Scholar 

  • Fredholm, B. B. (1982). Adenosine actions and adenosine receptors after 1 week treatment with caffeine. Acta Physiol. Scand. 115:283–286.

    Google Scholar 

  • Fredholm, B. B., and Lindstrom, K. (1980). The xanthine derivative 1-(5-oxohexyl)-3-methyl-7-propylxanthine (HWA 285) enhances the action of adenosine Acta Pharmacol. Toxicol. 58:187–192.

    Google Scholar 

  • Fredholm, B. B., Jonzon, B., and Lindgren, E. (1984). Changes in noradrenaline release and in beta receptor number in rat hippocampus following long-term treatment with theophylline or L-phenylisopropyladenosine. Acta Physiol. Scand. 122:55–59.

    Google Scholar 

  • Fredholm, B. B., Arslan, G., Johansson, B., Kull, B., and Svenningsson, P. Adenosine A2A receptors and the actions of caffeine. In Okada, Y. (ed.), The Role of Adenosine in the Nervous System, Elsevier Science, Amsterdam, pp. 51–74.

  • Garrett, B. E., and Holtzman, S. G. (1994). Caffeine cross-tolerance to selective dopamine D1 and D2 receptor agonists but not to their synergistic interaction. Eur. J. Pharmacol. 262:65–75.

    Google Scholar 

  • Georgiev, V., Johansson, B., and Fredholm, B. B. (1993). Long-term caffeine treatment leads to a decreased susceptibility to NMDA-induced clonic seizures in mice without changes in adenosine A1-receptor number. Brain Res. 612:271–277.

    Google Scholar 

  • Goldberg, M. R., Curatelo, P. W., and Robertson, D.(1987). Caffeine down regulates β-adrenoceptors in rat forebrain. Neurosci. Lett. 31:47–51.

    Google Scholar 

  • Green, G. M., and Stiles, G. L.(1986). Chronic caffeine ingestion sensitizes the A1 adenosine receptor-adenylate cyclase system in rat cerebral cortex. J. Clin. Invest. 47:222–227.

    Google Scholar 

  • Griffiths, R. R., and Mumford, G. K.(1996) Caffeine reinforcement, discrimination, tolerance and physical dependence in laboratory animals and humans. In: Schuster, C. R., and Kuhar, M. J. (eds.). Handbook of Experimental Pharmacology, Springer-Verlag, Heidelberg, pp. 315–341.

    Google Scholar 

  • Harmatz, J. S., and Greenblatt, D. J.(1987). A simplex procedure for fitting nonlinear pharmacokinetic models. Comp. Biol. Med. 17:199–208.

    Google Scholar 

  • Hawkins, M., Dugich, M. M., Porter, N. M., Urbanic, M., and Radulovacki, M.(1988). Effects of chronic administration of caffeine on adenosine A1 and A2 receptors in rat brain. Brain Res. Bull. 21:479–482.

    Google Scholar 

  • Holtzman, S. G., Mante, S., and Minneman, K. P.(1991). Role of adenosine receptors in caffeine tolerance. J. Pharmacol. Exp. Ther. 256:62–68.

    Google Scholar 

  • Jacobson, K. A., von Lubitz, D. K. J. E., Daly, J. W., and Fredholm, B. B.(1996). Adenosine receptor ligands: Differences with acute versus chronic treatment. Trends Pharmacol. Sci. 17:108–113.

    Google Scholar 

  • Johansson, B., Ahlberg, S., van der Plocq, I., Brene, S., Lindefors, N., Persson, H., and Fredholm, B. B. (1993). Effect of long term caffeine treatment on A1 and A2 adenosine receptor binding and on mRNA levels in rat brain. Naunyn-Schmiedeberg Arch. Pharmacol. 347:407–414.

    Google Scholar 

  • Lupica, C. R., Berman, R. F., and Jarvis, M. F. (1991). Chronic theophylline treatment increases adenosine A1 but not adenosine A2 receptor binding in rat brain: An autoradiographic study. Synapse 9:95–102.

    Google Scholar 

  • Marangos, P. J., Boulenger, J. P., and Patel, J. (1984). Effects of chronic caffeine on brain adenosine receptors: Regional and ontogenetic studies. Life Sci. 34:899–907.

    Google Scholar 

  • Nikodijević, O., Sarges, R., Daly, J. W., and Jacobson, K. A.(1991). Behavioral effects of A1-and A2-selective agonists and antagonists: Evidence for synergism and antagonism. J. Pharmacol. Exp. Ther. 259:286–294.

    Google Scholar 

  • Nikodijević, O., Jacobson, K. A., and Daly, J. W. (1993a). Locomotor activity in mice during chronic treatment with caffeine and withdrawal. Pharmacol. Biochem. Behav. 44:199–216.

    Google Scholar 

  • Nikodijević, O., Jacobson, K. A., and Daly, J. W. (1993b). Effects of combinations of methylxanthines and adenosine analogs on locomotor activity in control and chronic caffeine-treated mice. Drug Dev. Res. 30:104–110.

    Google Scholar 

  • Parkinson, F. E., Johansson, B., Lindstrom, K., and Fredholm, B. B. (1996). Adenosine A1 and A2A receptors and nitrobenzythioinosine-sensitive transporters in gerbil brain. No changes following long-term treatment with the adenosine transport inhibitor propentofylline. Neuropharmacology 35:79–89.

    Google Scholar 

  • Ramkumar, V., Bumgarner, J. R., Jacobson, K. A., and Stiles, G. L. (1988). Multiple components of the A1 adenosine receptor-adenylate cyclase system are regulated in the cerebral cortex by chronic caffeine ingestion. J. Clin. Invest. 82:242–247.

    Google Scholar 

  • Rudolphi, K. A., Keil, M., Fastbom, J., and Fredholm, B. B. (1989). Ischemic damage in gerbil hippocampus is reduced following upregulation of adenosine (A1) receptor by caffeine treatment. Neurosci. Lett. 103:275–280.

    Google Scholar 

  • Schultz, J. E., and Schmidt, B. H. (1986). Rolipram, a stereospecific inhibitor of calmodulin-independent phosphodiesterase, causes β-adrenoceptor subsensitivity in rat cerebral cortex. Naunyn-Schmiedeberg Arch. Pharmacol. 333:23–30.

    Google Scholar 

  • Seale, T. W., Abla, K. A., Shamim, M. T., Carney, J. M., and Daly, J. W. (1988). 3,7-Dimethyl-1-propargylxanthine: A potent and selective in vivo antagonist of adenosine analogs. Life Sci. 43:1671–1684.

    Google Scholar 

  • Shi, D., Nikodijević, O., Jacobson, K. A., and Daly, J. W. (1993). Chronic caffeine alters the density of A1-adenosine, β-adrenergic, serotonin, cholinergic and GABAA receptors and L-type calcium channels in mouse brain. Cell. Mol. Neurobiol. 13:247–261.

    Google Scholar 

  • Shi, D., Nikodijević, O., Jacobson, K. A., and Daly, J. W. (1994). Effects of chronic caffeine on adenosine, dopamine and acetylcholine systems in mice. Arch. Pharmacodyn. Ther. 328:261–287.

    Google Scholar 

  • Snyder, S. H., Katims, J. J., Annau, Z., Bruns, R. F., and Daly, J. W. (1981). Adenosine receptors and behavioral actions of methylxanthines. Proc. Natl. Acad. Sci. USA 78:3260–3264.

    Google Scholar 

  • Stefanovich, V. (1974). Concerning specificity of the influence of pentoxifylline on various cyclic AMP phosphodiesterases. Res. Commun. Chem. Pathol. Pharmacol. 8:673–680.

    Google Scholar 

  • Szot, P., Sanders, R. C., and Murray, T. F. (1987). Theophylline-induced up-regulation of A1-adenosine receptors associated with reduction in sensitivity to convulsants. Neuropharmacology 26:1173–1180.

    Google Scholar 

  • Traversa, U., Rosati, A. M., Florio, C., and Vertua, R. (1994). Effects of chronic administration of adenosine antagonists on A1 and A2A receptors in mouse brain. In Vivo 8:1073–1078.

    Google Scholar 

  • Von Lubitz, D. K. J. E., Paul, I. A., Ji, X. D., Carter, M., and Jacobson, K. A. (1994). Chronic adenosine A1 receptor agonist and antagonist: Effect on receptor density and N-methyl-D-aspartate-induced seizures in mice. Eur. J. Pharmacol. 253: 95–99.

    Google Scholar 

  • Wu, P. H., and Coffin, V. L. (1984). Up-regulation of brain [3H]diazepam binding sites in chronic caffeine-treated rats. Brain Res. 294:186–189.

    Google Scholar 

  • Wu, P.H., and Phillis, J. W. (1988). Up-regulation of brain [3H]diazepam binding sites in chronic caffeine-treated rats. Gen. Pharmacol. 17:501–503.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, D., Daly, J.W. Chronic Effects of Xanthines on Levels of Central Receptors in Mice. Cell Mol Neurobiol 19, 719–732 (1999). https://doi.org/10.1023/A:1006901005925

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006901005925

Navigation