Skip to main content
Log in

Kinetic measurements of binding of galectin 3 to a laminin substratum

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Galectin 3, a β-galactoside binding protein, contains a C-terminal carbohydrate recognition domain (CRD) and an N-terminal segment including multiple repeats of a proline/tyrosine/glycine-rich motif. Previous work has shown that galectin 3 but not the isolated CRD binds to laminin, a multivalent ligand, with positive cooperativity indicating the formation of multiple interactions although the lectin in solution is monomeric. Using surface plasmon resonance, we find that hamster galectin 3 at sub-µmolar concentrations or its isolated CRD at all concentrations binds to a laminin substratum with similar association (kass; 10 – 30 000 M−1 S−1) and dissociation (kdiss; 0.2 – 0.3 S −11 ) rates and weak affinity (Ka; 1 - 3 X 105 M−1). At higher concentrations of galectin 3 the off rate decreases ten fold leading to increased affinity. Ligation of an N-terminal epitope of galectin 3 with a monoclonal Fab fragment increases association and dissociation rates ten fold. A recombinant protein obtained by deletion of the first 93 N-terminal residues binds to laminin with positive cooperativity and a slowly dissociating fraction (Kdiss; 0.002 S−1) accummulates on the substratum. The data suggest that homophilic interactions between CRD as well as N terminal domains are implicated in galectin 3 aggregation on the substratum leading to positive binding cooperativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu FT (1993) Immunol Today 14: 486–90.

    Google Scholar 

  2. Barondes SH, Cooper DN, Gitt MA, Leffler H (1994) J Biol Chem 269: 20807–10.

    Google Scholar 

  3. Hughes RC (1997) Biochem Soc Trans 25: 1194–98.

    Google Scholar 

  4. Perillo NL, Marcus ME, Baum LG (1998) J Mol Med 76: 402–12.

    Google Scholar 

  5. Zuberi RI, Frigeri LG, Liu FT (1994) Cell Immunol 156: 1–12.

    Google Scholar 

  6. Yamaoka A, Kumabara I, Frigeri LG, Liu FT (1995) J Immunol 154: 3479–87

    Google Scholar 

  7. Jeng KC, Frigeri LG, Liu FT (1994) Immunol Lett 42: 113–16

    Google Scholar 

  8. Massa SM, Cooper DNW, Leffler H, Barondes SH (1993) Biochemistry 32: 260–67.

    Google Scholar 

  9. Hsu DK, Zuberi RI, Liu FT (1992) J Biol Chem 267: 14167–74.

    Google Scholar 

  10. Probstmeier R, Montag D, Schachner M (1995) J Neurochem 64: 2465–74.

    Google Scholar 

  11. Henrick K, Bawumia S, Barboni EAM, Mehul B, Hughes RC (1998) Glycobiology 8: 45–57.

    Google Scholar 

  12. Seetharaman J, Kanigsberg A, Slaaby R, Leffler H, Barondes SH, Rini JM (1998) J Biol Chem 272: 13047–52.

    Google Scholar 

  13. Agrwal N, Wang S-Y, Wang J (1993) J Biol Chem 268: 14932–39.

    Google Scholar 

  14. Mehul B, Bawumia S, Martin SR, Hughes RC (1994) J Biol Chem 269: 18250–58.

    Google Scholar 

  15. Ochieng J, Fridman R, Nangia-Makker P, Kleiner DE, Liotta LA, Stetler-Stevenson WG, Raz A (1994) Biochemistry 33: 14109–114.

    Google Scholar 

  16. Ochieng J, Green B, Evans S, James O, Warfield P (1998) Biochim Biophys Acta 1379: 97–106.

    Google Scholar 

  17. Ochieng J, Platt D, Tait L, Hogan V, Raz T, Carmi P, Raz A (1993) Biochemistry 32: 4455–60.

    Google Scholar 

  18. Yang RY, Hill PN, Hsu DK, Liu FT (1998) Biochemistry 37: 4086–92.

    Google Scholar 

  19. Mehul B, Bawumia S, Hughes RC (1995) FEBS Lett 360: 160–64.

    Google Scholar 

  20. Kuklinski S, Probstmeir R (1998) J Neurochem 70: 814–23.

    Google Scholar 

  21. Ho MK, Springer TA (1982) J Immunol 128: 1221–28.

    Google Scholar 

  22. Woo HJ, Shaw LM, Messier JM, Mercurio AM(1990) J Biol Chem 265: 7097–99.

    Google Scholar 

  23. Lee EC, Woo HJ, Korzelius CA, Steele D, Mercurio AM (1991) Arch Surg 126: 1498–502.

    Google Scholar 

  24. Sato S, Hughes RC (1992) J Biol Chem 267: 6983–90.

    Google Scholar 

  25. Rao CN, Goldstein IJ, Liotta LA (1983) Arch Biochem Biophys 227: 118–24.

    Google Scholar 

  26. Arumugham RG, Hsieh TCY, Tanzer ML, Laine RA (1986) Biochim Biophys Acta 883: 112–26.

    Google Scholar 

  27. Fujiwara S, Shinkai H, Deutzmann R, Paulsson M, Timpl R (1988) Biochem J 252: 453–61.

    Google Scholar 

  28. Knibbs RN, Perini F, Goldstein IJ (1989) Biochemistry 28: 6379–92.

    Google Scholar 

  29. Merkle RK, Cummings RD (1987) J Biol Chem 262: 8179–89.

    Google Scholar 

  30. Dahlquist FW (1978) Meth Enzymol 48: 270–310.

    Google Scholar 

  31. Neet KE (1980) Meth Enzymol 64: 139–78.

    Google Scholar 

  32. Nicholson MW, Barclay AN, Singer MS, Rosen SD, van der Merwe PA (1998) J Biol Chem 273: 763–70.

    Google Scholar 

  33. Mehta P, Cummings RD, McEver RP (1998) J Biol Chem 273: 32506–13.

    Google Scholar 

  34. Yamamoto K, Ishida C, Shinohara Y, Hasegawa Y, Konami Y, Osawa T, Irimura T (1994) Biochemistry 33: 8159–166.

    Google Scholar 

  35. Bao Q, Hughes RC (1995) J Cell Sci 108: 2791–800.

    Google Scholar 

  36. Herrmann J, Turck CW, Atchison RE, Huflejt ME, Poulter L, Gitt MA, Burlingame AL, Barondes SH, Leffler H (1993) J Biol Chem 268: 26704–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Colin Hughes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barboni, E.A., Bawumia, S. & Hughes, R.C. Kinetic measurements of binding of galectin 3 to a laminin substratum. Glycoconj J 16, 365–373 (1999). https://doi.org/10.1023/A:1007004330048

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007004330048

Navigation