Skip to main content
Log in

High density lipoprotein, apolipoprotein A-1, and coronary artery disease

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

High density lipoproteins (HDL), one of the main lipoprotein particles circulating in plasma, is involved in the reverse cholesterol transport. Several lines of evidence suggest that elevated levels of HDL is protective against coronary heart disease. The role of HDL in the removal of body cholesterol and in the regression of atherosclerosis add to the importance of understanding the molecular-cellular processes that determine plasma levels of HDL. Factors modulating plasma levels of HDL may have influence on the predisposition of an individual to premature coronary artery disease. Apolipoprotein (apo) A-I is the main apolipoprotein component of HDL and, to a large extent, sets the plasma levels of HDL. Thus, understanding the regulation of apoA-I gene expression may provide clues to raise plasma levels of HDL. This review discusses the various pathways that alter plasma levels of HDL. Since apoA-I is the main protein component of HDL and determines the plasma levels of HDL, this review also covers the regulation of apoA-I gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Srivastava RAK, Jiao S, Tang J, Pfleger B, Kitchens RT, Schonfeld G: In vivo regulation of low density lipoprotein receptor and apolipoprotein B gene expressions by dietary fat and cholesterol in inbred strains of mice. Biochim Biophys Acta 1086: 29-43, 1991

    Google Scholar 

  2. Srivastava RAK, Tang J, Baumann D, Schonfeld G: Hormonal and nutritional stimuli modulate apolipoprotein B mRNA editing in mouse liver. Biochem Biophys Res Com 188: 135-141, 1992

    Google Scholar 

  3. Srivastava RAK, Srivastava N, Averna M, Cefalu AB Schonfeld G: Molecular bases of low production rates of apolipoprotein B-100 and truncated apoB-82 in a mutant HepG2 cell line generated by targeted modification of the apolipoprotein B gene. J Lipid Res 40: 901-912, 1999

    Google Scholar 

  4. Srivastava RAK, Tang J, Krul ES, Pfleger B, Kitchens RT, Schonfeld G: Dietary fatty acids and dietary cholesterol differ in their effects on the in vivo regulation of apoA-I and A-II gene expression. Biochim Biophys Acta 1125: 251-261, 1992

    Google Scholar 

  5. Hayek T, Ito Y, Azrolan N, Verdery RB, Aaalto-Setala K, Walsh A, Breslow JL: Dietary fat increases high density lipoprotein (HDL) levels both by increasing the transport rates and decreasing the fractional catabolic rates of HDL cholesteryl ester and apolipoprotein (Apo) A-1. J Clin Invest 91: 1665-1671, 1993

    Google Scholar 

  6. Srivastava RAK: Dietary saturated fat, but not cholesterol regulates apolipoprotein A-I gene expression by posttranscriptional mechanism. Biochem Mol Bio Intern 34: 393-402, 1994

    Google Scholar 

  7. Azrolan N, Odaka H, Breslow JL, Fisher EA: Dietary fat elevates hepatic apoA-I production by increasing the fraction of apolipoprotein A-I mRNA in the translating pool. J Biol Chem 270: 19833-19838, 1995

    Google Scholar 

  8. Srivastava RAK, Srivastava N, Averna M, Lin RC, Korach KS, Lubahn DB, Schonfeld G: Estrogen up-regulates apolipoprotein E (apoE) gene expression by increasing apoE mRNA in the translating pool via the estrogen receptor α-mediated pathway. J Biol Chem 272: 33360-33366, 1997

    Google Scholar 

  9. Srivastava RAK, Baumann D, Schonfeld G: Regulation of low density lipoprotein receptor by estrogen differs in rat and mouse. Eur J Biochem 216: 527-538, 1993

    Google Scholar 

  10. Glomset JA: The plasma lecithin:cholesterol acyltransferase reaction. J Lipid Res 9: 155-167, 1968

    Google Scholar 

  11. Benditt EP, Erickson N: Amyloid protein SAA is associated with high density lipoprotein from human serum. Proc Natl Acad Sci USA 74: 4025-4028, 1977

    Google Scholar 

  12. Lee NS, Brewer Jr. HB, Osborne Jr. JC: Beta2-glycoprotein I. Molecular properties of an unusual apolipoprotein, apolipoprotein H. J Biol Chem 258: 4765-4770, 1983

    Google Scholar 

  13. Grow TE, Fried M: Interchange of apoprotein components between the human plasma high density lipoprotein subclasses HDL2 and HDL3 in vitro. J Biol Chem 253: 8034-8041, 1978

    Google Scholar 

  14. Eisenberg S, Levy RI: Lipoprotein metabolism. Adv Lipid Res 13: 1-89

  15. Marsh JB: 1974. Lipoproteins in a nonrecirculating perfusate of rat liver. J Lipid Res 15: 544-550, 1975

    Google Scholar 

  16. Hamilton RL, Williams MC, Fielding CJ, Havel RJ: Discoidal bilayer structure of nascent high density lipoproteins from perfused rat liver. J Clin Invest 58: 667-680, 1976

    Google Scholar 

  17. Marsh JB: Apoproteins of the lipoproteins in a nonrecirculating perfusate of rat liver. J Lipid Res 17: 85-90, 1976

    Google Scholar 

  18. Forester GP, Tall AR, Bisgaier CL, Glickman RM: Rat intestine secrets spherical high density lipoproteins. J Biol Chem 258: 5938-5943, 1983

    Google Scholar 

  19. Deckelbaum RJ, Eisenberg S, Oschry Y, Cooper M, Blum C: Abnormal high density lipoproteins of abetalipoproteinemia: Relevance to normal HDL metabolism. J Lipid Res 23: 1274-1282, 1982

    Google Scholar 

  20. Miller GJ, Miller NE: Plasma high density lipoprotein concentration and development of ischaemic heart disease. Lancet I: 16-19, 1975

    Google Scholar 

  21. Eisenberg S: High density lipoprotein metabolism. J Lipid Res 25: 1017-1058, 1984

    Google Scholar 

  22. Schaefer EJ, Heaton WH, Wetzel MG, Brewer Jr. HB: Plasma apolipoprotein A-1 absence associated with a marked reduction of high density lipoproteins and premature atherosclerosis. Arteriosclerosis 2: 16-26, 1982

    Google Scholar 

  23. Miller JCE, Barth RK, Shaw PH, Elliott RW, Hastie ND: Identification of a cDNA clone for mouse apolipoprotein A-1 (apoA-1) and its use in characterization of apoA-I mRNA expression in liver and intestine. Proc Natl Acad Sci USA 80: 1511-1515, 1983

    Google Scholar 

  24. Sorci-Thomas M, Prack MM, Dashti N, Johnson F, Rudel LL, Williams DL: Apolipoprotein (Apo) A-1 production and mRNA abundance explain plasma apoA-1 and high density lipoprotein differences between two nonhuman primate species with high and low susceptibilities to diet-induced hypercholesterolemia. J Biol Chem 263: 5183-5189, 1988

    Google Scholar 

  25. Rubin EM, Ishida BY, Clift SM, Krauss RM: Expression of human apolipoprotein A-I in transgenic mice results in reduced plasma levels of murine apolipoprotein A-I and the appearance of two new high density lipoprotein size subclasses. Proc Natl Acad Sci USA 88: 434-438, 1991

    Google Scholar 

  26. KChajek-shaul T, Hayek T, Walsh A, Breslow JL: Expression of the human apolipoprotein A-I gene in transgenic mice alters high density lipoprotein (HDL) particle size distribution and diminishes selective uptake of HDL cholesteryl esters. Proc Natl Acad Sci USA 88: 6731-6735, 1991

    Google Scholar 

  27. Walsh A, Ito Y, Breslow JL: High levels of human apolipoprotein A-I in transgenic mice results in increased plasma levels of small high density lipoprotein (HDL) particles comparable to human HDL3. J Biol Chem 264: 6488-6494, 1989

    Google Scholar 

  28. Rubin EM, Krauss RM, Spangler EA, Verstuyft JG, Clift SM: Inhibition of early atherogenesis in transgenic mice by human apolipoprotein A-I. Nature 353: 265-267, 1991

    Google Scholar 

  29. Schultz JR, Verstuyft JD, Gong EL, Nichols AV, Rubin EM: Protein composition determines the anti-atherogenic properties of HDL in transgenic mice. Nature 365: 762-764, 1993

    Google Scholar 

  30. Voyiaziakis E, Goldberg IJ, Plump AS, Rubin EM, Huang LS: ApoA-I deficiency causes both hypertriglyceridemia and increased atherosclerosis in human apoB transgenic mice. J Lipid Res 39: 313-321, 1998

    Google Scholar 

  31. Paszty C, Maeda N, Verstuyft J, Rubin EM: Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. J Clin Invest 94: 899-903, 1994

    Google Scholar 

  32. Zhang SH, Reddick RL, Piedrahita JA, Maeda N: Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258: 468-471, 1992

    Google Scholar 

  33. Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL: Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71: 343-353, 1992

    Google Scholar 

  34. Plump AS, Scott CJ, Breslow JL: Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci USA 91: 9607-9611, 1994

    Google Scholar 

  35. Kronenberg F, Steinmetz A, Kostner GM, Dieplinger H: Lipoprotein[a] in health and disease. Crit Rev Clin Lab Sci 33: 495-543, 1996

    Google Scholar 

  36. Liu AC, Lawn RM, Verstuyft JG, Rubin EM: Human apolipoprotein A-I prevents atherosclerosis associated with apolipoprotein[a] in transgenic mice. J Lipid Res 35: 2263-2267, 1994

    Google Scholar 

  37. Staels B, Auwerx J, Chan L, von Tol A, Rosseneu M, Verhoven G: Influence of development, estrogens, and food intake, on apolipoprotein AI, AII, and E mRNA in rat liver and intestine. J Lipid Res 30: 1137-1145, 1989

    Google Scholar 

  38. Strobl W, Chan L, Patsch W: Differential regulation of hepatic apolipoprotein A-I and A-II gene expression by thyroid hormone in rat liver. Atherosclerosis 97: 161-170, 1992

    Google Scholar 

  39. Archer TK, Tam S, Deeley RG: Kinetics of estrogen-dependent modulation of apolipoprotein A-I synthesis in human hepatoma cells. J Biol Chem 261: 5067-5074, 1986

    Google Scholar 

  40. Seishima M, Bisgaier CL, Davies SL, Glickman RM: Regulation of hepatic apolipoprotein synthesis in the 17 α-ethinyl estradioltreated rat. J Lipid Res 32: 941-951, 1991

    Google Scholar 

  41. Srivastava RAK, Kitchens RT, Schonfeld G: Regulation of the apolipoprotein AIV gene expression differs in rat and mouse. Eur J Biochem 222: 507-514, 1994

    Google Scholar 

  42. Srivastava RAK, Krul ES, Lin RC, Schonfeld G: Regulation of lipoprotein metabolism by estrogen in inbred strains of mice occurs primarily at the posttranscriptional level. Mol Cell Biochem 173: 161-168, 1997

    Google Scholar 

  43. Srivastava RAK: Regulation of apolipoprotein E by dietary lipids occurs by transcriptional and posttranscriptional mechanisms. Mol Cell Biochem 155: 153-162, 1996

    Google Scholar 

  44. Tang J, Srivastava RAK, Krul ES, Baumann D, Pfleger BA, Kitchens RT, Schonfeld G: In vivo regulation of apolipoprotein A-I gene expression by estradiol and testosterone occurs by different mechanisms in inbred strains of mice. J Lipid Res 32: 1571-1585, 1991

    Google Scholar 

  45. Tam S, Archer TK, Deeley RG: Effects of estrogen on apolipoprotein secretion by the human hepatocarcinoma cell line, HepG2. J Biol Chem 260: 1670-1675, 1985

    Google Scholar 

  46. Strobl W, Gorder NL, Lin-Lee Y, Gotto Jr. AM, Patsch W: Role of thyroid hormones in apolipoprotein A-I gene expression in rat liver. J Clin Invest 85: 659-667, 1990

    Google Scholar 

  47. Soyal SM, Seelos C, Lin-Lee Y, Sanders S, Gotto Jr. AM, Hatchey DL, Pastch W: Thyroid hormone influences the maturation of apolipoprotein A-I messenger RNA in rat liver. J Biol Chem 270: 3996-4004, 1995

    Google Scholar 

  48. Vandenbouck Y, Janvier B, Loriette C, Bereziat G, Mangeney-Andreani M: Thyroid hormone modulates apolipoprotein A-I gene expression at the post-transcriptional level in HepG2 cells. Eur J Biochem 231: 126-132, 1995

    Google Scholar 

  49. Kaptein A, de Wit ECM, Princen HMG: Retinoids stimulate apoAI synthesis by induction of gene transcription in primary hepatocyte cultures from cynomolgus monkey (Macaca fascicularis). Arterioscler Thromb 13: 1505-1514, 1993

    Google Scholar 

  50. Haghpassand M, Moberly JB: 9-cis-retinoic acid increases apolipoprotein AI secretion and mRNA expression in HepG2 cells. Atherosclerosis 11: 199-207, 1995

    Google Scholar 

  51. Elshourbagy N, Boguski MS, Liao WS, Jefferson LS, Gordon JL, Taylor JM: Expression of rat apolipoprotein A-IV and A-I gene: mRNA induction during development and in response to glucocorticoids and insulin. Proc Natl Acad Sci USA 82: 8242-8246, 1985

    Google Scholar 

  52. Varma VK, Smith TK, Sorci-Thomas M, Ettinger Jr. W: Dexamethasone increases apolipoprotein A-I concentrations in medium and apolipoprotein A-I mRNA abundance from HepG2 cells. Metabolism 41: 1075-1080, 1992

    Google Scholar 

  53. Saladin R, Vu-dac N, Fruchart J, Auwerx J, Staels B: Transcriptional induction of rat liver apolipoprotein A-I gene expression by glucocorticoids requires the glucocorticoid receptor and a labile cell-specific protein. Eur J Biochem 239: 451-459, 1996

    Google Scholar 

  54. Paigen B, Ishida BY, Verstuyft J, Winters RB, Albee D: Atherosclerosis susceptibility differences among progenitors of recombinant inbred strains of mice. Arteriosclerosis 10: 316-323, 1990

    Google Scholar 

  55. Cuthbert C, Wang Z, Zhang X, Tam S: Regulation of human apolipoprotein A-I gene expression by gramoxone. J Biol Chem 272: 14954-14960,1997

    Google Scholar 

  56. Sirtori CR, Franceschini G: Effects of fibrates on serum lipids and atherosclerosis. Pharm Ther 37: 167-191, 1998

    Google Scholar 

  57. Berthou F, Saladin R, Yaqoob P, Calder P, Fruchart JC, Denefle P, Auwerx J, Staels B: Regulation of rat liver apolipoprotein A-I, apolipoprotein A-II, and acyl-CoA oxidase gene expression by fibrates and dietary fatty acids. Eur J Biochem 232: 179-187, 1995

    Google Scholar 

  58. Peters JM, Hennuyer N, Staels B, Fruchart J, Fiever C, Gonzalez FJ, Auwerx J: Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor a-deficient mice. J Biol Chem 272: 27307-27312, 1997

    Google Scholar 

  59. Nishina PM, Naggert JK, Verstuyft J, Paigen B: Atherosclerosis in genetically obese mice: The mutants obese, diabetes, fat, tubby, and lethal yellow. Metabolism 43: 554-558, 1994

    Google Scholar 

  60. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM: Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425-432, 1994

    Google Scholar 

  61. Lee GH, Proenca R, Montez JM, Carrol KM, Darvishzadeh JG, Lee JI, Friedman JM: Abnormal splicing of the leptin receptor in diabetic mice. Nature 379: 632-635, 1996

    Google Scholar 

  62. Silver DL, Jiang X, Tall AR: Increased high density lipoprotein (HDL), defective hepatic catabolism of apoA-I and apo A-II, and decreased apoA-I mRNA in ob/ob mice. J Biol Chem 274: 4140-4146, 1999

    Google Scholar 

  63. Saku K, Liu R, Ohta T, Jimi S, Matsuda I, Arakawa K: Plasma HDL levels are regulated by the catabolic rate of large particles of lipoprotein containing apoA-I. Biochem Biophys Res Commun 200: 557-561, 1994

    Google Scholar 

  64. Eisenberg S, Oschry Y, Zimmerman J: Intravascular metabolism of the cholesteryl ester moiety of rat plasma lipoproteins. J Lipid Res 25: 1017-1058, 1984

    Google Scholar 

  65. Glass CK, Pittman RC, Weinstein DB, Steinberg D: Dissociation of tissue uptake of cholesterol ester from that of apolipoprotein A-I of rat plasma high density lipoprotein: selective delivery of cholesterol to liver, adrenal, and gonad. Proc Natl Acad Sci USA 80: 5435-5439, 1983

    Google Scholar 

  66. Brown ML, Inazu A, Hesler CB, Agellon LB, Mann C, Whitlock ME, Marcel YL, Milne RW, Koizumi J, Mabuchi H, Takeda R, Tall AR: Molecular basis of lipid transfer protein deficiency in a family with increased high density lipoproteins. Nature (London) 342: 448-451, 1989

    Google Scholar 

  67. Illingworth DR, Alam SS, Alam NA: Lipoprotein lipase and hepatic lipase activity after heparin administrtaion in abetalipoproteinemia and hypobetalipoproteinemia. Metabolism 32: 869-873, 1983

    Google Scholar 

  68. Lagrost L, Gandjini H, Athias A, Guyard-Dangremont V, Lallemant C, Gambert P: Influence of plasma cholesteryl ester transfer activity on the LDL and HDL distribution profiles in normolipidemic subjects. Arterioscler Thromb 13: 815-825, 1993

    Google Scholar 

  69. Cheung MC, Brown BG, Wolf AC, Albers JJ: Altered particle size distribution of apolipoproteins in subjects with coronary artery disease. J Lipid Res 32: 383-394, 1991

    Google Scholar 

  70. Marotti KR, Castle CK, Boyle TP, Lin AH, Murray RW, Melchior GW: Severe atherosclerosis in transgenic mice expressing simian cholesteryl ester transfer protein. Nature 364: 73-75, 1993

    Google Scholar 

  71. Foger B, Chase M, Amar MJ, Vaisman BL, Shamburek RD, Paigen B, Fruchart-Najib J, Paiz JA, Koch CA, Hoyt RF, Brewer HB, Jr: Santamarina-Fojo, S. Cholesteryl ester transfer protein corrects dysfunctional high density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice. J Biol Chem 274: 36912-36920, 1999

    Google Scholar 

  72. Bersot TP, Vega GL, Grundy SM, Palaoglu KE, Atagunduz P, Ozbayrakci S, Gokdemir O, Mahley RW: Elevated hepatic lipase activity and low levels of high density lipoprotein in a normotriglyceridemic, nonobese Turkish population. J Lipid Res 40: 432-438, 1999

    Google Scholar 

  73. Bkades B, Vega GL, Grundy SM: Activities of lipoprotein lipase and hepatic triglyceride lipase in postheparin plasma of pateints with low concentration of HDL cholesterol. Arterioscler Thromb 13: 1227-1235, 1993

    Google Scholar 

  74. Murtomaki S, Tahvanainen E, Antikainen M, Tiret L, Nicaud V, Jansen H, Ehnholm C: Hepatic lipase gene polymorphisms influence plasma HDL levels. Results from Finnish EARS participants. Arteroscler Thromb Vasc Biol 17: 1879-1884, 1997

    Google Scholar 

  75. Busch SJ, Barnhart RL, Martin GA, Fitzerald MC, Yates MT, Mao SJ, Thomas CE, Jackson RL: Human hepatic triglyceride lipase expression reduces high density lipoprotein and aortic cholesterol in cholesterol-fed transgenic mice. J Biol Chem 269: 16376-16382, 1994

    Google Scholar 

  76. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M: Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271: 518-520, 1996

    Google Scholar 

  77. Ueda Y, Royer L, Gong E, Zhang J, Cooper PN, Francone O, Rubin EM: Lower plasma levels and accelerated clearance of high density lipoprotein (HDL) and non-HDL cholesterol in scavenger receptor class B type I transgenic mice. J Biol Chem 274: 7165-7171, 1999

    Google Scholar 

  78. Kozarsky K, Donahee MH, Rigotti A, Iqbal SN, Edelman ER, Krieger M: Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature 387: 414-417, 1997

    Google Scholar 

  79. Kozyraki R, Fyfe J, Kristiansen M, Gerdes C, Jacobsen C, Cui S, Christensen EI, Aminoff M, de la Chapelle A, Krahe R, Verroust PJ, Moestrup SK: The intrinsic factor-vitamin B12 receptor, cubulin, is a high-affinity apolipoprotein A-I receptor facilitating endocytosis of high density lipoprotein. Nature Med 5: 656-661, 1999

    Google Scholar 

  80. Landschulz KT, Pathak RK, Rigotti A, Krieger M, Hobbs HH: Regulation of scavenger receptor, class B, type I, a high density lipoprotein receptor, in liver and steroidogenic tissues of the rat. J Clin Invest 98: 984-995, 1996

    Google Scholar 

  81. Karathanasis SK, Zannis VI, Breslow JL: Isolation and characterization of the human apolipoprotein A-I gene. Proc Natl Acad Sci USA 80: 6147-6151, 1983

    Google Scholar 

  82. Zannis VI, Cole FS, Jackson CL, Kurnit DM, Karathanasis SK: Distribution of apolipoprotein A-I, C-II, C-III, and E mRNA in fetal human tissues. Time-dependent induction of apolipoprotein E mRNA by cultures of human monocyte-macrophages. Biochemistry 24: 4450-4455, 1985

    Google Scholar 

  83. Haddad IA, Ordovas JM, Fitzpatrick T, Karathanasis SK: Linkage, evolution, and expression of the rat apolipoprotein A-I, C-III and A-IV genes. J Biol Chem 261: 13268-13277, 1986

    Google Scholar 

  84. Shemer R, Walsh A, Eisenberg S, Breslow JL, Razin A: Tissuespecific methylation patterns and expression of the human apolipoprotein A-I gene. J Biol Chem 265: 1010-1015, 1990

    Google Scholar 

  85. Sastry KN, Seedorf U, Karathanasis SK: Different cis-acting DNA elements control expression of the human apolipoprotein AI gene in different cell types. Mol Cell Biol 8: 605-614, 1988

    Google Scholar 

  86. Widom RL, Ladias JAA, Kouidou S, Karathanasis SK: Synergistic interactions between transcription factors control expression of the apolipoprotein A-I gene in liver cells. Mol Cell Biol 11: 677-687, 1991

    Google Scholar 

  87. Harnish DC, Malik S, Kilbourne E, Costa R, Karathanasis SK: Control of apolipoprotein A-I gene expression through synergistic interactions between hepatocyte nuclear factor 3 and 4. J Biol Chem 271: 13621-13628, 1996

    Google Scholar 

  88. Ladias JAA, Karathanasis SK: Regulation of the apolipoprotein A-I gene by ARP-1, a novel member of the steroid receptor superfamily. Science 251: 561-565, 1991

    Google Scholar 

  89. Ge R, Rhee M, Malik S, Karathanasis SK: Transcriptional repression of apolipoprotein A-I gene expression by orphan receptor ARP1. J Biol Chem 269: 13185-13192, 1994

    Google Scholar 

  90. Ladias JAA, Hodzopoulou-Cladaras M, Kardassis D, Cardot P, Chiang J, Zannis V, Cladaras C: Transcriptional regulation of human apolipoprotein genes apoB, apoC-III, and apoA-II by members of the steroid hormone receptor superfamily HNF-4, ARP-1, EAR-2, and EAR-3. J Biol Chem 267: 15849-15860, 1992

    Google Scholar 

  91. Fraser D, Keller D, Martinez V, Santiso-Mere D, Straney R, Briggs MR: Utilization of recombinant adenovirus and dominant negative mutants to characterize hepatocyte nuclear factor 4-regulated apolipoprotein A-I and C-III expression. J Biol Chem 272: 13892-13898, 1997

    Google Scholar 

  92. Chan J, Nakabayashi H, Wong NCW: HNF-4 increases activity of the rat apoA-I gene. Nucl Acid Res 21: 1205-1211, 1993

    Google Scholar 

  93. Nakshatri H, Chambon P: The directly repeated RG(G/T)TCA motifs of the rat and mouse cellular retinol-binding protein II genes are promiscuous binding sites for RAR, RXR, HNF-4, ARP-1 homo and heterodimers. J Biol Chem 269: 890-902, 1994

    Google Scholar 

  94. Gaudet F, Ginsberg GS: Transcriptional regulation of the cholesteryl esters transfer protein gene by the orphan nuclear hormone receptor apolipoprotein AI regulatory protein-1. J Biol Chem 270: 29916-29922, 1995

    Google Scholar 

  95. Kilbourne EJ, Widom R, Harnish DC, Malik S, Karathanasis SK: Involvement of early growth response factor Egr-1 in apolipoprotein A-I gene transcription. J Biol Chem 270: 7004-7010, 1995

    Google Scholar 

  96. Bisaha JG, Simon TG, Gordon JI, Breslow JL: Characterization of an enhancer element in the human apolipoprotein C-III gene that regulates human apolipoprotein A-I gene expression in the intestinal epithelium. J Biol Chem 270: 19979-19988, 1998

    Google Scholar 

  97. Mietus-Snyder M, Sladek FM, Ginsburg GS, Kuo CF, Ladias JA, Darnell Jr JE, Karathanasis SK: Antagonism between apolipoprotein A-I regulatory protein 1, Ear3/COUP-TF, and hepatocyte nuclear factor 4 modulates apolipoprotein C-III gene expression in liver and intestinal cells. Mol Cell Biol 12: 1708-1718, 1992

    Google Scholar 

  98. Vu-Bac N, Chopin-Delannoy S, Gervois P, Bonnelye E, Martin G, Fruchart JC, Laudet V, Staels B: The nuclear receptors peroxisome proliferator-activated receptor alpha and rev-erbalpha mediate the species-specific regulation of apolipoprotein A-I expression by fibrates. J Biol Chem 273: 25713-25720, 1998

    Google Scholar 

  99. Devchand PR, Hihi AK, Perroud M, Schleuning D, Spiegelman BM, Wahli W: Chemical probes that differentially modulate peroxisome proliferator-activated receptor alpha and BLTR, nuclear and cell surface reeceptors for leukotriene B(4). J Biol Chem 274: 23341-23348, 1999

    Google Scholar 

  100. Hennuyer N, Poulain P, Madsen L, Berg RK, Houdebine LM, Branellec D, Fruchart JC, Fievet C, Duverger N, Staels B: Beneficial effects of fibrates on apolipoprotein A-I metabolism occur independently of any peroxisome proliferative response. Circulation 99: 2445-24451, 1999

    Google Scholar 

  101. Berthou L, Duverger N, Emmanuel F, Langouet S, Auwerx J, Guillouzo A, Fruchart J, Rubin E, Denefle P, Staels B, Branellec D: Opposite regulation of human versus mouse apolipoprotein A-I by fibrates in human apolipoprotein A-I transgenic mice. J Clin Invest 97: 2408-2416, 1996

    Google Scholar 

  102. Erickson SK, Van Zuiden PEA: Effects of bile salts on rat hepatic acyl CoA:Cholesterol Acyl transferase. Lipids 30: 911-915, 1995

    Google Scholar 

  103. Horton JD, Cuthbert JA, Spady DK: Regulation of hepatic 7ahydroxylase expression and response to dietary cholesterol in the rat and hamster. J Biol Chem 270: 5381-5387, 1995

    Google Scholar 

  104. Jones MP, Pandak WM, Heuman DK, Chiang JYL, Hylemon PB, Vlahcevic ZR: Cholesterol 7a-hydroxylase: evidence for transcriptional regulation by cholesterol or metabolic products of cholesterol in the rat. J Lipid Res 34: 885-892, 1993

    Google Scholar 

  105. Taniguchi T, Chen J, Cooper AD: Regulation of cholesterol 7 αhydroxylase gene expression in HepG2 cells. Effect of serum bile salts, and coordiante and noncoordinate regulation with other sterol-responsive genes. J Biol Chem 269: 10071-10078, 1994

    Google Scholar 

  106. Ishida BY, Blanche PJ, Nichols AV, Yashar M, Paigen B: Effects of atherogenic diet consumption on lipoproteins in mouse strains C57BL/6 and C3H. J Lipid Res 32: 559-568, 1991

    Google Scholar 

  107. Dueland S, Drisko J, Graf L, Machleder D, Lusis AJ, Davis RA: Effect of dietary cholesterol and taurocholate on cholesterol 7α-hydroxylase and hepatic LDL receptors in inbred mice. J Lipid Res 34: 923-931, 1993

    Google Scholar 

  108. Gong Y, Everett ET, Schwartz DA, Norris JS, Wilson FA: Molecular cloning, tissue distribution, and expression of a 14-kDa bile acid-binding protein from rat ileal cytosol. Proc Natl Acad Sci USA 91: 4741-4715, 1994

    Google Scholar 

  109. Kanda T, Foucand L, Nakamura Y, Niot I, Besnard P, Fujita M, Sakai Y, Hatakeyama K, Ono T, Fuji H: Regulation of expression of human intestinal bile acid-binding in protein Caco2 cells. Biochem J 330: 261-265, 1998

    Google Scholar 

  110. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B: Identification of a nuclear receptor for bile acids. Science 284: 1362-1365, 1999

    Google Scholar 

  111. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stommel JB, Willson TM, Zavacki AM, Moore DD, Lehmann JM: Bile acids: Natural ligands for an orphan nuclear receptor. Science 284: 1365-1368, 1999

    Google Scholar 

  112. Wang H, Chen J, Hollister K, Sowers LC, Forman FM: Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 3: 543-553, 1999

    Google Scholar 

  113. Srivastava RAK, Averna M, Schonfeld G: Dietary cholate lowers plasma HDL levels by downregulating apolipoprotein A-I gene transcription. Circ Suppl 100: I-399, 1999

    Google Scholar 

  114. Raney AK, Johnson JL, Palmer CNA, McLachlan A: Members of the nuclear receptor superfamily regulate transcription from the hepatitis B virus nucleocapsid promoter. Virology 71: 1058-1071, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, R., Srivastava, N. High density lipoprotein, apolipoprotein A-1, and coronary artery disease. Mol Cell Biochem 209, 131–144 (2000). https://doi.org/10.1023/A:1007111830472

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007111830472

Navigation