Skip to main content
Log in

Human Papillomavirus is More Prevalent in First Trimester Spontaneously Aborted Products of Conception Compared to Elective Specimens

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

In this study the possible role of human papillomaviruses (HPV) in spontaneous abortions is addressed by assaying for HPV DNA in first trimester spontaneous and electively aborted products of conception materials enriched for chorionic villi. The presence of HPVs was measured by polymerase chain reacton (PCR) amplification and DNA dot blot hybridization using an internal probe. The “broad spectrum” HPV primers were directed to amplify E6/E7 junction sequences, while the probe was of an HPV-16 sequence with significant homology to HPV-6/11. The quantity and quality of isolated DNA was also analyzed and compared by observing the PCR amplification of a cellular sequence from the human β-globin gene. Fifteen of the 25 spontaneous samples (60%) were found to be positive for HPV E6/E7 sequences. In comparison, only 3 of the 15 elective samples (20%) were positive. This is the first study of HPV in fetal materials to incorporate material from elective abortions as a control group. Although confounding contamination from the cervix and vagina can’t be ruled out, these data are significant and strongly suggest that HPVs are elevated in spontaneously aborted products of conception. Furthermore, these results suggest the possibility that HPVs may be etiologic agents of at least some spontaneous abortions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Roberts C.J., and Lowe C.R., Lancet 1, 636–637, 1975.

    Google Scholar 

  2. Leridon H., Human fertility: the basic components. Chicago: University of Chicago Press, 1977.

    Google Scholar 

  3. Smith S., Clinics in Lab Med 12, 393–410, 1992.

    Article  CAS  Google Scholar 

  4. Brown Z.A., Vontver L.A., Benedetti J., Critchlow C.W., Sells C.J., Berry S., and Corey L. N., Engl J Med 317, 1246–1251, 1987.

    Article  CAS  Google Scholar 

  5. Monif G.R., Am J Obstet Gynecol 119, 549–551, 1974.

    Article  CAS  Google Scholar 

  6. Miller E., Cradock-Watson J.E., and Pollock T.M., Lancet 2, 781–784, 1982.

    Article  CAS  Google Scholar 

  7. Peckham C., Rev Infect Dis 7, 11S, 1985.

    Article  Google Scholar 

  8. Icart J., Didier J., Dalens M., Chabanon G., and Boucays A., Biomedicine 34, 160–163, 1981.

    CAS  PubMed  Google Scholar 

  9. Mergui J.L., De Brux J., and Salat-Baroux J., J Gynecol, Obstet Biol Reprod (Paris) 12, 651–656, 1984.

    Google Scholar 

  10. Fife K.H., Rogers R.E., and Zwickl B.W., J Infect Dis 156, 904–911, 1987.

    Article  CAS  Google Scholar 

  11. Schneider A., Hotz M., and Gissmann L., Int J Can 40, 198–201, 1987.

    Article  CAS  Google Scholar 

  12. Rando R.F., Lindheim S., Hasty L., Sedlacek T.V., Woodland M., and Eder C., Am J Obstet Gynecol 161, 50–55, 1989.

    Article  CAS  Google Scholar 

  13. Csango P.A., Skunland J., Nilsen A., Pedersen B.S., and Jagars G., Sex Trans Dis 19, 149–153, 1992.

    Article  CAS  Google Scholar 

  14. de Roda Husman A.M., Walboomers J.M., Hopman E., Blecker O.P., Helmerhorst T.M., Rozendaal L., Voorhorst F.J., and Meijer C.J., J Med Virol 46, 97–102, 1995.

    Article  CAS  Google Scholar 

  15. Cason J., Kaye J.N., Jewers R.J., Kambo P.K., Bible J.M., Kell B., Shergill B., Pakarian F., Raju K.S., and Best J.M., J Med Virol 47, 209–218, 1995.

    Article  CAS  Google Scholar 

  16. Kemp E.A., Hakenwerth A.M., Laurent S.L., Gravitt P.E., and Stoerket J., Obstet Gyn 79, 649–656.

  17. Gloss B., Bernard H.-U., Seedorf K., and Klock G., EMBO J 6, 3735–3743, 1987.

    Article  CAS  Google Scholar 

  18. Mitta, I.R., Tsutsumi K., Pater A., and Pater M.M., Obstet Gynecol 81, 5–12, 1993.

    Google Scholar 

  19. von Knebel-Doeberitz M., Bauknecht T., Bartsch D., and zur Hausen H., Proc Natl Acad Sci USA 88, 141–145, 1991.

    Article  Google Scholar 

  20. Weinberg E.D., Rev Infect Dis 6, 814–831, 1984.

    Article  CAS  Google Scholar 

  21. Wegmann T.G., Lin H., Guilbert L., and Mosmann T.R., Immunol. Today 1993; 14: 353–356.

    Article  CAS  Google Scholar 

  22. Fujinaga Y., Shimada M., Okazawa K., Fukushima M., Kato I., and Fujinaga K., J Gen Virol 72, 1039–1044, 1994.

    Article  Google Scholar 

  23. Han L., Parmley T.H., Keith S., Kozlowski K.J., Smith L.J., and Hermonat P.L., Virus Genes 12, 47–52, 1996.

    Article  CAS  Google Scholar 

  24. Bubb V., McCance D.J., and Schlegel R., Virology 163, 243–246, 1988.

    Article  CAS  Google Scholar 

  25. Choo K.B., Pan C.C., and Han S.H., Virology 161, 259–261, 1987.

    Article  CAS  Google Scholar 

  26. Tobiasch E., Rebreau M., Geletneky K., et al., J Med Virol 44, 215–222, 1994.

    Article  CAS  Google Scholar 

  27. Armbruster-Moraes E., Ishimoto I.M., Leao E., and Zugaib M., Gyn Onc 54, 152–158, 1994.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermonat, P.L., Han, L., Wendel, P.J. et al. Human Papillomavirus is More Prevalent in First Trimester Spontaneously Aborted Products of Conception Compared to Elective Specimens. Virus Genes 14, 13–17 (1997). https://doi.org/10.1023/A:1007975005433

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007975005433

Navigation