Skip to main content
Log in

Supersaturation: Enhancement of Skin Penetration and Permeation of a Lipophilic Drug

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To increase the dermal delivery of a lipophilic model compound (LAP), and to deduce the underlying mechanism of enhanced absorption.

Methods. Penetration of LAP from mixtures of up to four degrees of saturation into the stratum corneum was evaluated using a tape-stripping method; epidermal permeation of the drug was measured in Franz diffusion cells. The relative diffusion and stratum corneum-vehicle partition coefficients of LAP were determined by fitting the results to the appropriate solutions to Fick's second law of diffusion.

Results. Both the skin permeation rate and the amount of LAP in the stratum corneum increased linearly with increasing degree of saturation. The apparent diffusivity and its partition coefficient deduced from the penetration experiments were independent of the degree of saturation of the drug in the applied formulation, and consistent with corresponding parameters derived from the permeation experiments.

Conclusions. Supersaturation can increase the skin penetration and permeation of lipophilic drugs. The diffusion and partition parameters deduced for LAP indicate that supersaturation acts exclusively via increased thermodynamic activity without apparent effect on the barrier function of the skin per se.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. H. Guy. Current status and future prospects of transdermal drug delivery. Pharm. Res. 13:1765-1768 (1996).

    Google Scholar 

  2. T. Higuchi. Physical chemical analysis of percutaneous absorption process. J. Soc. Cosmetic Chemists 11:85-97 (1960).

    Google Scholar 

  3. S. Kondo and I. Sugimoto. Enhancement of transdermal delivery by superfluous thermodynamic potential. I. Thermodynamic analysis of nifedipine transport across the lipoidal barrier. J. Pharmacobio-Dyn. 10:587-594 (1987).

    Google Scholar 

  4. S. Kondo, D. Yamanaka, and I. Sugimoto. Enhancement of transdermal delivery by superfluous thermodynamic potential. III. Percutaneous absorption of nifedipine in rats. J. Pharmacobio-Dyn. 10:743-749 (1987).

    Google Scholar 

  5. A. F. Davis and J. Hadgraft. Effect of supersaturation on membrane transport: 1. Hydrocortisone acetate. Int. J. Pharm. 76:1-8 (1991).

    Google Scholar 

  6. M. A. Pellett, A. F. Davis, and J. Hadgraft. Effect of supersaturation on membrane transport: 2. Piroxicam. Int. J. Pharm. 111:1-6 (1994).

    Google Scholar 

  7. N. A. Megrab, A. C. Williams, and B. W. Barry. Oestradiol permeation through human skin and silastic membrane: Effects of propylene glycol and supersaturation. J. Control. Release 36:277-294 (1995).

    Google Scholar 

  8. M. A. Pellett, S. Castellano, J. Hadgraft, and A. F. Davis. The penetration of supersaturated solutions of piroxicam across silicone membranes and human skin in vitro. J. Control. Release 46:205-214 (1997).

    Google Scholar 

  9. M. A. Pellett, M. S. Roberts, and J. Hadgraft. Supersaturated solutions evaluated with an in vitro stratum corneum tape stripping technique. Int. J. Pharm. 151:91-98 (1997).

    Google Scholar 

  10. F. P. Schwarb, G. Imanidis, E. W. Smith, J. M. Haigh, and C. Surber. Effect of concentration and degree of saturation of topical fluocinonide formulations on in vitro membrane transport and in vivo availability on human skin. Pharm. Res. 16:909-915 (1999).

    Google Scholar 

  11. M. Iervolino, S. L. Raghavan, and J. Hadgraft. Membrane penetration enhancement of ibuprofen using supersaturation. Int. J. Pharm. 198:229-238 (2000).

    Google Scholar 

  12. S. L. Raghavan, A. Trividic, A. F. Davis, and J. Hadgraft. Effect of cellulose polymers on supersaturation and in vitro membrane transport of hydrocortisone acetate. Int. J. Pharm. 193:231-237 (2000).

    Google Scholar 

  13. M. F. Coldman, B. J. Poulsen, and T. Higuchi. Enhancement of percutaneous absorption by the use of volatile:nonvolatile systems as vehicles. J. Pharm. Sci. 58:1098-1102 (1969).

    Google Scholar 

  14. S. Kondo, H. Yamasaki-Konishi, and I. Sugimoto. Enhancement of transdermal delivery by superfluous thermodynamic potential. II. In vitro-in vivo correlation of percutaneous nifedipine transport. J. Pharmacobio-Dyn. 10:662-668 (1987).

    Google Scholar 

  15. C. M. Chiang, G. L. Flynn, N. D. Weiner, and G. J. Szpunar. Bioavailability assessment of topical delivery systems: Effect of vehicle evaporation upon in vitro delivery of minoxidil from solution formulations. Int. J. Pharm. 55:229-236 (1989).

    Google Scholar 

  16. J. Kemken, A. Ziegler, and B. W. Müller. Influence of supersaturation on the thermodynamic effect of bupranolol after dermal administration using microemulsions as vehicle. Pharm. Res. 9: 554-558 (1992).

    Google Scholar 

  17. T. Henmi, M. Fujii, K. Kikuchi, N. Yamanobe, and M. Matsumoto. Application of an oily gel formed by hydrogenated soybean phospholipids as a percutaneous absorption-type ointment base. Chem. Pharm. Bull. 42:651-655 (1994).

    Google Scholar 

  18. J.-Y. Fang, C.-T. Kuo, Y.-B. Huang, P.-C. Wu, and Y.-H. Tsai. Transdermal delivery of sodium nonivamide acetate from volatile vehicles: Effects of polymers. Int. J. Pharm. 176:157-167 (1999).

    Google Scholar 

  19. J. E. Harrison, A. C. Watkinson, D. M. Green, J. Hadgraft, and K. Brain. The relative effect of Azone® and Transcutol® on permeant diffusivity and solubility in human stratum corneum. Pharm. Res. 13:542-546 (1996).

    Google Scholar 

  20. F. Pirot, Y. N. Kalia, A. L. Stinchcomb, G. Keating, A. Bunge, and R. H. Guy. Characterization of the permeability barrier of human skin in vivo. Proc. Natl. Acad. Sci. 94:1562-1567 (1997).

    Google Scholar 

  21. K. Moser, K. Kriwet, C. Froehlich, A. Naik, Y. N. Kalia, and R. H. Guy. Permeation enhancement of a highly lipophilic drug using supersaturated systems. J. Pharm. Sci. 90:605-614 (2001).

    Google Scholar 

  22. I. J. Bosman, K. Ensing, and R. A. de Zeeuw. Standardization procedure for the in vitro skin permeation of anticholinergics. Int. J. Pharm. 169:65-73 (1998).

    Google Scholar 

  23. A. C. Watkinson, J. Hadgraft, K. A. Walters, and K. R. Brain. Measurement of diffusional parameters in membranes using ATR-FTIR spectroscopy. Int. J. Cosmet. Sci. 16:199-210 (1994).

    Google Scholar 

  24. R. L. Anderson and J. M. Cassidy. Variations in physical dimensions and chemical composition of human stratum corneum. J. Invest. Dermatol. 61:30-32 (1973).

    Google Scholar 

  25. Y. N. Kalia, F. Pirot, and R. H. Guy. Homogeneous transport in a heterogeneous membrane: Water diffusion across human stratum corneum in vivo. Biophys. J. 71:2692-2700 (1996).

    Google Scholar 

  26. K. A. Walters. Penetration enhancers and their use in transdermal therapeutic systems. In J. Hadgraft and R. H. Guy (eds.), Transdermal Drug Delivery. Developmental Issues and Research Initiatives. Dekker, New York, 1989 pp. 197-246.

    Google Scholar 

  27. H. Wagner, H. K. Kostka, C.-M. Lehr, and U. F. Schaefer. Comparison of human skin ex-vivo penetration/permeation models. Proceed. Int'l. Symp. Control. Rel. Bioact. Mater. 25:547-548 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moser, K., Kriwet, K., Froehlich, C. et al. Supersaturation: Enhancement of Skin Penetration and Permeation of a Lipophilic Drug. Pharm Res 18, 1006–1011 (2001). https://doi.org/10.1023/A:1010948630296

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010948630296

Navigation