Skip to main content
Log in

Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The surfaces of five commercially available titanium implants (Brånemark Nobel Biocare, 3i ICE, 3i OSSEOTITE, ITI-TPS, and ITI-SLA) were compared by scanning electron microscopy, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectroscopy. All five implant types were screw-shaped and fabricated from commercially pure (cp) titanium, but their surface properties differed both as regards surface morphology and surface chemical composition. The macro- and microstructure of the implant surfaces were investigated by scanning electron microscopy. The surfaces chemical composition was determined using the surface-sensitive analytical techniques of X-ray photoelectron spectroscopy and time-of-flight secondary ion spectrometry. Surface topographies were found to reflect the type of mechanical/chemical fabrication procedures applied by the manufacturers. The titanium oxide (passive) layer thickness was similar (5–6 nm) and typical for oxide films grown at or near room temperature. A variety of elements and chemical compounds not related to the metal composition were found on some implant types. They ranged from inorganic material such as sodium chloride to specific organic compounds believed to be due to contamination during fabrication or storage. The experimental findings are believed to make a contribution to a better understanding of the interplay between industrial fabrication procedure and physico-chemical implant surface properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Lausmaa, J. Electron Spectr. Rel. Phenom. 81 (1996) 343.

    Google Scholar 

  2. D. C. Smith, R. M. Pillar and G. Murray, Trans. 11th Annu. Meeting Soc. Biomater. 8 (1985) 8.

    Google Scholar 

  3. B. Kasemo and J. Lausmaa, J. Biomed. Mater. Res. 22 (1988) 145.

    Google Scholar 

  4. J. J. Collis and G. Embery, Biomaterials 13 (1992) 553.

    Google Scholar 

  5. C. B. Johansson, H. A. Hhansson and T. Albrektsson, ibid. 11 (1990) 277.

    Google Scholar 

  6. S. G. Steinemann, Periodontology 2000, 17 (1998) 7.

    Google Scholar 

  7. K. E. Healy and P. Ducheyne, Biomaterials 13 (1992) 553.

    Google Scholar 

  8. D. M. Brunette, in “Surface characterization of Biomaterials” (Elsevier Science Publisher B.V., Amsterdam, 1998) p. 203.

    Google Scholar 

  9. B. Kasemo and J. Lausmaa, in “The Bone-Biomaterials Interface”, edited by J. E. Davies (University of Toronto Press, Toronto, 1991) p. 19.

    Google Scholar 

  10. D. Buser, R. K. Schenk, S. Steinemann, J. P. Fiorellini, C. H. Fox and H. Stich, J. Biomed. Mater. Res. 25 (1991) 889.

    Google Scholar 

  11. M. Wong, J. Eulenberger, R. Schenk and E. Hunziker, ibid. 29 (1995) 1567.

    Google Scholar 

  12. A. Wennerberg, in “On Surface Roughness and Implant Incorporation”. Dissertation, Göteborg University, Göteborg (1996) p. 65.

    Google Scholar 

  13. R. K. Schenk and D. Buser, Periodontology 2000 17 (1998) 22.

    Google Scholar 

  14. R. Solar, S. Pollak and E. Korostoff, J. Biomed. Mater. Res. 13 (1979) 217.

    Google Scholar 

  15. J. Woodman, J. Jacobs, J. Galante and R. Urban, J. Orthop. Res. 1 (1984) 421.

    Google Scholar 

  16. M. Wieland, C. Sittig, M. Textor, V. Schenk, S.-W. Ha, B. A. Keller, E. Wintermantel and N. D. Spencer, ECASIA97 (1997) p. 139.

  17. A. Arys, C. Philippard, N. Dourov, Y. He, Q. T. Le and J. J. Pireaux, J. Biomed. Res. 43(3) (1998) 300.

    Google Scholar 

  18. B. D. Ratner, in “Surface Characterisation of Biomaterials”, (Elsevier Science Publishers B.V., Amsterdam, 1988) p. 13.

    Google Scholar 

  19. C. D. Wagner, L. E. Davis, M. V. Zeller, J. A. Taylor, R. M. Raymond and L. H. Gale, Surf. Interf. Anal. 3 (1981) 211.

    Google Scholar 

  20. R. N. S. Sodhi, A. Weninger, J. E. Davies and K. Sreenivas, J. Vac. Sci. Technol. A 9(3) (1991) 1329.

    Google Scholar 

  21. C. Sittig, M. Wieland, P.-H. Vallotto, M. Textor and N. D. Spencer, J. Mater. Sci.: Mater. Med. 10 (1998) 35.

    Google Scholar 

  22. C. Sittig, in “PhD thesis ETH Nr. 12657”, ETH Zürich, 1998.

  23. J. F. Molder, W. F. Stickle, P. E. Sobol, K. D. Bomben and J. Chastain, Handbook of X-ray Photoelecyron Spectroscopy, Perkin-Elmer Corporation, Physical Electronics Division, Minnesota (1992).

    Google Scholar 

  24. D. Briggs, A. Brown and J. C. Vickerman, “Handbook of Static Secondary Ion Mass Spectrometry” (John Wiley & Sons, Chichester/New York/Brisbane/Toronto/Singapore, 1989) p. 50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massaro, C., Rotolo, P., De Riccardis, F. et al. Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition. Journal of Materials Science: Materials in Medicine 13, 535–548 (2002). https://doi.org/10.1023/A:1015170625506

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015170625506

Keywords

Navigation