Skip to main content
Log in

Interspecies Scaling of Clearance and Volume of Distribution Data for Five Therapeutic Proteins

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The clearance and volume of distribution of five human proteins (recombinant CD4, CD4 immuno-globulin G, growth hormone, tissue-plasminogen activator, and relaxin) in humans and laboratory animals were analyzed as a function of body weight using allometric scaling techniques. These proteins cover a 16-fold range of molecular weight (6 to 98 kD), are produced by recombinant or synthetic methods, and may be cleared by different mechanisms. The analyses revealed that the clearance and volume data for each protein were satisfactorily described by an allometric equation (Y = a Wb). The allometric exponent (b) for clearance (ml/min) ranged from 0.65 to 0.84, the allometric exponent for the initial volume of distribution (ml) ranged from 0.83 to 1.05, and the allometric exponent for the volume of distribution at steady state (ml) ranged from 0.84 to 1.02. Exponent values from 0.6 to 0.8 for clearance and 0.8 to 1.0 for volumes are frequently cited for small molecules and are expected based on empirical interspecies relationships. When the preclinical data were analyzed separately, the pre-clinical allometric relationships were usually predictive of the human results. These findings indicate that the clearance and volume of distribution of select biomacromolecules follow well-defined, size-related physiologic relationships, and preclinical pharmacokinetic studies provide reasonable estimates of human disposition. Employing this methodology during the early phases of drug development may provide a more rational basis for dose selection in the clinical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. T. A. McMahon and J. T. Bonner. On Size and Life, Scientific American Books, New York, 1983.

    Google Scholar 

  2. W. A. Calder III. Size, Function, and Life History, Harvard University Press, Cambridge, MA, 1984.

    Google Scholar 

  3. K. Schmidt-Nielsen. Scaling: Why Is Animal Size So Important? Cambridge University Press, New York, 1984.

    Google Scholar 

  4. H. Boxenbaum and R. W. D'Souza. Interspecies pharmacokinetic scaling, biological design, and neoteny. In B. Testa (eds.), Advances in Drug Research, Vol. 19, Academic Press Limited, London, 1990, pp. 139–196.

    Google Scholar 

  5. H. Boxenbaum. Interspecies pharmacokinetic scaling and the evolutionary-comparative paradigm. Drug Metab. Rev. 15:1071–1121 (1984).

    Google Scholar 

  6. J. Mordenti and W. Chappell. The use of interspecies scaling in toxicokinetics. In A. Yacobi, J. Skelly, and V. Batra (eds.), Toxicokinetics in New Drug Development, Pergamon Press, Elmsford, NY, 1989, pp. 42–96.

    Google Scholar 

  7. W. R. Chappell and J. Mordenti. Extrapolation of toxicological and pharmacological data from animals to humans. In B. Testa (ed.), Advances in Drug Research, Vol. 20, Academic Press, San Diego, 1991, pp. 1–116.

    Google Scholar 

  8. H. Boxenbaum. Interspecies scaling, allometry, physiological time and the ground plan of pharmacokinetics. J. Pharmacokinet. Biopharm. 10:201–227 (1982).

    Google Scholar 

  9. Q. J. Sattentau and R. A. Weiss. The CD4 antigen: Physiological ligand and HIV receptor. Cell 52:631–633 (1988).

    Google Scholar 

  10. C. A. J. Janeway. Accessories or coreceptors? Nature 335:208–210 (1988).

    Google Scholar 

  11. P. J. Maddon, A. G. Dalgleish, J. S. McDougal, P. R. Clapham, R. A. Weiss, and R. Axel. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47:333–348 (1986).

    Google Scholar 

  12. D. H. Smith, R. A. Byrn, S. A. Marsters, T. Gregory, J. E. Groopman, and D. J. Capon. Blocking of HIV-1 infectivity by soluble, secreted form of the CD4 antigen. Science 238:1704–1707 (1987).

    Google Scholar 

  13. R. A. Byrn, I. Sekigawa, S. M. Chamow, J. S. Johnson, T. J. Gregory, D. J. Capon, and J. E. Groopman. Characterization of in vitro inhibition of human immunodeficiency virus by purified recombinant CD4. J. Virol. 63:4370–4375 (1989).

    Google Scholar 

  14. R. Harris, S. Chamow, T. Gregory, and M. Spellman. Characterization of a soluble form of human CD4: Peptide analyses confirm the expected amino acid sequence, identify glycosylation sites, and demonstrate the presence of three disulfide bonds. Eur. J. Biochem. 188:291–300 (1990).

    Google Scholar 

  15. M. W. Spellman, C. K. Leonard, L. J. Basa, I. Gelineo, and H. van Halbeek. Carbohydrate structures of recombinant soluble human CD4 expressed in Chinese hamster ovary cells. Biochemistry 30:2395–2406 (1991).

    Google Scholar 

  16. D. J. Capon, S. M. Chamow, J. Mordenti, S. A. Marsters, T. Gregory, H. Mitsuya, R. A. Byrn, C. Lucas, F. M. Wurm, J. E. Groopman, S. Broder, and D. H. Smith. Designing CD4 immunoadhesins for AIDS therapy. Nature 337:525–531 (1989).

    Google Scholar 

  17. R. J. Harris, K. L. Wagner, and M. W. Spellman. Structural characterization of recombinant CD4-IgG hybrid molecule. Eur. J. Biochem. 194:611–620 (1990).

    Google Scholar 

  18. R. A. Byrn, J. Mordenti, C. Lucas, D. Smith, S. A. Marsters, J. S. Johnson, P. Cossum, S. M. Chamow, F. M. Wurm, T. Gregory, J. E. Groopman, and D. J. Capon. Biological properties of CD4 immunoadhesin. Nature 344:667–670 (1990).

    Google Scholar 

  19. V. Johnson and T. Maack. Renal extraction, filtration, absorption, and catabolism of growth hormone. Am. J. Physiol. 233:F185–F196 (1977).

    Google Scholar 

  20. G. Baumann, M. W. Stolar, K. Amburn, C. P. Barsano, and B. C. DeVries. A specific growth hormone-binding protein in human plasma: Initial characterization. J. Clin. Endocrinol Metab. 62:134 (1986).

    Google Scholar 

  21. A. C. Herington, S. Ymer, and J. Stevenson. Identification and characterization of specific binding proteins for growth hormone in normal human sera. J. Clin. Invest. 77:1817–1823 (1986).

    Google Scholar 

  22. G. Baumann, K. D. Amburn, and T. A. Buchanan. The effect of circulating growth hormone-binding protein on metabolic clearance, distribution, and degradation of human growth hormone. J. Clin. Endocrinol. Metab. 64:657–660 (1987).

    Google Scholar 

  23. G. Baumann, K. Amburn, and M. A. Shaw. The circulation growth hormone (GH)-binding protein complex: A major constituent of plasma GH in man. Endocrinology 122:976 (1988).

    Google Scholar 

  24. D. Collen, E. J. Topol, A. J. Tiefenbrunn, H. K. Gold, M. L. Weisfeldt, B. E. Sobel, R. C. Leinbach, J. A. Brinker, P. A. Ludbrook, I. Yasuda, B. H. Bulkey, A. K. Robison, A. M. Hutter, W. R. Bell, J. J. Spadaro, B. A. Khaw, and E. B. Grossbard. Coronary thrombosis with recombinant human tissue-type plasminogen activator: A prospective, randomized, placebo-controlled trial. Circulation 70:1012–1017 (1984).

    Google Scholar 

  25. H. K. Gold, R. C. Leinbach, H. D. Garabedian, T. Yasuda, J. A. Johns, E. B. Grossbard, I. Palacios, and D. Collen. Acute coronary reocclusion after thrombolysis with recombinant human tissue-type plasminogen activator: Prevention by maintenance infusion. Circulation 73:347–352 (1986).

    Google Scholar 

  26. TIMI Study Group. The thrombolysis in myocardial infarction (TIMI) trial. Phase I findings. N. Engl. J. Med. 312:932–936 (1985).

    Google Scholar 

  27. M. Verstraete, M. Bory, D. Collen, R. Erbel, R. J. Lennane, D. Mathey, H. R. Michels, M. Schartl, R. Uebis, R. Bernard, R. W. Brower, D. P. deBobo, W. Huhmann, J. Lubsen, J. Meyer, W. Rutsch, W. Schmidt, and R. von Essen. Randomized trial of intravenous recombinant tissue-type plasminogen activator versus intravenous streptokinase in acute myocardial infarction. Report from the European Cooperative Study Group for Recombinant Tissue-Type Plasminogen Activator. Lancet 2:842–847 (1985).

    Google Scholar 

  28. D. V. Goeddel, W. J. Kohr, D. Pennica, and G. A. Vehar. Human tissue-type plasminogen activator, pharmaceutical compositions containing it, process for making it, and DNA and transformed cell intermediates therefore, U.K. Patent, 2119804, 1983.

  29. M. W. Spellman, C. K. Ferguson, and J. V. O'Connor. Characterization of N-linked oligosaccharides from recombinant tissue-type plasminogen activator. XIIIth International Carbohydrate Symposium, Ithaca, NY, 1986.

  30. D. Pennica, W. E. Holmes, W. J. Kohr, R. N. Harkins, G. A. Vehar, C. A. Ward, W. F. Bennett, E. Yelverton, P. H. Seeburg, H. L. Heyneker, D. V. Goeddel, and D. Collen. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 301:214–221 (1983).

    Google Scholar 

  31. P. Wallen, G. Pohl, N. Bergsdorf, M. Rånby, T. Ny, and H. Jörnvall. Purification and characterization of a melanoma cell plasminogen activator. Eur. J. Biochem. 132:681–686 (1983).

    Google Scholar 

  32. G. A. Vehar, W. J. Kohr, W. F. Bennett, D. Pennica, C. A. Ward, R. Keck, R. N. Harkins, and D. Collen. Characterization studies on human melanoma cell tissue plasminogen activator. Biotechnology 2:1051–1057 (1984).

    Google Scholar 

  33. G. A. Vehar, M. W. Spellman, B. A. Keyt, C. K. Ferguson, R. G. Keck, R. C. Chloupec, R. Harris, W. F. Bennett, S. E. Builder, and W. S. Hancock. Characterization studies on human tissue-type plasminogen activator produced by recombinant DNA technology. Cold Spring Harbor Symp. Quant. Biol., 1986.

  34. C. Bakhit, D. Lewis, V. Busch, P. Tanswell, and M. Mohler. Biodisposition and catabolism of tissue-type plasminogen activator in rats and rabbits. Fibrinolysis 2:31–36 (1988).

    Google Scholar 

  35. M. Einarsson, Smedsrod, and H. Pertoft. Uptake and degradation of tissue plasminogen activator in rat liver. Thromb. Haemostas. 59:474–479 (1988).

    Google Scholar 

  36. C. Bakhit, D. Lewis, R. Billings, and B. Malfroy. Cellular catabolism of recombinant tissue-type plasminogen activator. Identification and characterization of a novel high affinity uptake system on rat hepatocytes. J. Biol. Chem. 262:8716–8720 (1987).

    Google Scholar 

  37. I. Dodd, B. Nunn, and J. H. Robinson. Isolation, identification, and pharmacokinetic properties of human tissue-type plasminogen activator species: Possible localization of a clearance recognition site. Thromb. Haemostas. 59:523–528 (1988).

    Google Scholar 

  38. A. Hotchkiss, C. J. Refino, C. K. Leonard, J. V. O'Connor, C. Crowley, J. McCabe, K. Tate, G. Nakamura, D. Powers, A. Levinson, M. Mohler, and M. W. Spellman. The influence of carbohydrate structure on the clearance of recombinant tissue-type plasminogen activator. Thromb. Haemostas. 60:255–261 (1988).

    Google Scholar 

  39. O. D. Sherwood. Relaxin, In E. Knobil and J. Neill (eds.), The Physiology of Reproduction, Raven Press, New York, 1988, pp. 585–673.

    Google Scholar 

  40. P. D. Johnston, J. Burnier, S. Chen, D. Davis, H. Morehead, M. Remington, M. Struble, G. Tregear, and H. Niall. Structure/function studies on human relaxin. In C. M. Deber, V. J. Hruby, and K. D. Kopple (eds.), Peptides: Structure and Function, Pierce Chemical Co., 1985, pp. 683–686.

  41. P. Tanswell, G. Heinzel, A. Greischel, and J. Krause. Nonlinear pharmacokinetics of tissue-type plasminogen activator in three animal species and isolated perfused rat liver. J. Pharmacol. Exp. Ther. 255:318–324 (1990).

    Google Scholar 

  42. H. Boxenbaum. Interspecies variation in liver weight, hepatic blood flow, and antipyrine intrinsic clearance: Extrapolation of data to benzodiazepines and phenytoin. J. Pharmacokinet. Biopharm. 8:165–176 (1980).

    Google Scholar 

  43. J. Mordenti and J. D. Green. The role of pharmacokinetics and pharmacodynamics in the development of therapeutic proteins. In A. Rescigno and A. K. Thakur (eds.), New Trends in Pharmacokinetics, NATO ASI Series, Plenum, New York, 1991, pp. 411–424.

    Google Scholar 

  44. J. O. Kahn, J. D. Allan, T. L. Hodges, L. D. Kaplan, C. J. Arri, H. F. Fitch, A. E. Izu, J. Mordenti, S. A. Sherwin, J. E. Groopman, and P. A. Volberding. The safety and pharmacokinetics of recombinant soluble CD4 (rCD4) in subjects with the acquired immunodeficiency syndrome (AIDS) and AIDS-related complex: A Phase I study. Ann. Int. Med. 112:254–261 (1990).

    Google Scholar 

  45. E. D. Sprengers and C. Kluft. Plasminogen activator inhibitors. Blood 2:381–387 (1987).

    Google Scholar 

  46. M. A. Hassett, C. Krishnamurti, C. F. Barr, and B. M. Alving. The rabbit as a model for studies of fibrinolysis. Thrombo. Res. 43:313–323 (1986).

    Google Scholar 

  47. G. V. Andreenko and E. E. Shimonaeva. Determination of the antiactivator activity in human and animal blood plasma using tissue plasminogen activator. Vopr. Med. Khim. 29:112–124 (1983).

    Google Scholar 

  48. J. A. Moore, G. Christopher, N. Rudman, J. MacLachlan, G. B. Fuller, B. Burnett, and J. W. Frane. Equivalent potency and pharmacokinetics of recombinant human growth hormones with or without an N-terminal methionine. Endocrinology 122:2920–2926 (1988).

    Google Scholar 

  49. J. Stassen, I. Vanlinthout, H. Lijnen, and D. Collen. A hamster pulmonary embolism model for the evaluation of the thrombolytic and pharmacokinetic properties of thrombolytic agents. Fibronlysis 4 (Suppl. 2):15–21 (1990).

    Google Scholar 

  50. R. A. Baughman. Pharmacokinetics of tissue plasminogen activator. In B. Sobel, D. Collen, and E. Grossbard (eds.), Tissue Plasminogen Activator in Thrombolytic Therapy, Marcel Dekker, New York, 1987, pp. 41–53.

    Google Scholar 

  51. K.-L. Fong, C. S. Crysler, B. A. Mico, K. E. Boyle, G. A. Kopia, L. Kopaciewicz, and R. K. Lynn. Dose-dependent pharmacokinetics of recombinant tissue-type plasminogen activator in anesthetized dogs following intravenous infusion. Drug Metab. Dispos. 16:201–206 (1988).

    Google Scholar 

  52. P. Tanswell, E. Seifried, P. C. A. F. Su, W. Feuerer, and D. C. Rijken. Pharmacokinetics and systemic effects of tissue-type plasminogen activator in normal subjects. Clin. Pharmacol. Ther. 46:155–162 (1989).

    Google Scholar 

  53. K. P. Fu, S. Lee, W. T. Hum, N. Kalyan, R. Rappaport, N. Hetzel, and P. P. Hung. Disposition of a novel recombinant tissue plasminogen activator, delta2-89 tPA, in mice. Thromb. Res. 50:33–41 (1988).

    Google Scholar 

  54. B. L. Ferraiolo, M. Cronin, C. Bakhit, M. Roth, M. Chestnut, and R. Lyon. The pharmacokinetics and pharmacodynamics of a human relaxin in the mouse pubic symphysis bioassay. Endocrinology 125:2922–2926 (1989).

    Google Scholar 

  55. R. Yarchoan, R. V. Thomas, J. M. Pluda, C. F. Perno, H. Mitsuya, K. S. Marczyk, S. A. Sherwin, and S. Broder. Phase I study of the administration of recombinant soluble CD4 (rCD4) by continuous infusion to patients with AIDS or ARC (abstract M.C.P. 137). Proceedings V International Conference on AIDS, Montreal, Canada, 1989.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mordenti, J., Chen, S.A., Moore, J.A. et al. Interspecies Scaling of Clearance and Volume of Distribution Data for Five Therapeutic Proteins. Pharm Res 8, 1351–1359 (1991). https://doi.org/10.1023/A:1015836720294

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015836720294

Navigation