Skip to main content
Log in

Differential Modulation of P-Glycoprotein Expression and Activity by Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors in Cell Culture

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. This study investigated the effects of the non-nucleoside HIV-1 reverse transcriptase inhibitors (NNRTI) nevirapine (NVR), efavirenz (EFV), and delavirdine (DLV) on P-glycoprotein (P-gp) activity and expression to anticipate P-gp related drug-drug interactions associated with combination therapy.

Methods. NNRTIs were evaluated as P-gp substrates by measuring differential transport across Caco-2 cell monolayers. Inhibition of P-gp mediated rhodamine123 (Rh123) transport in Caco-2 cells was used to assess P-gp inhibition by NNRTIs. Induction of P-gp expression and activity in LS180V cells following 3-day exposure to NNRTIs was measured by western blot analysis and cellular Rh123 uptake, respectively.

Results. The NNRTIs showed no differential transport between the basolateral to apical and apical to basolateral direction. NNRTI transport in either direction was not affected by the P-gp inhibitor verapamil. DLV inhibited Rh123 transport, causing a reduction to 15% of control at 100 μM (IC50 = 30 μM). NVR caused a concentration-dependent induction of P-gp expression in LS180V cells resulting in a 3.5-fold increase in immunoreactive P-gp at 100 μM NVR. Induction attributable to EFV and DLV was quantitatively smaller. NVR significantly reduced cellular uptake of Rh123 into LS180V cells, indicating increased drug efflux due to induced P-gp activity; effects of EFV and DLV were smaller. Acute DLV treatment of LS180V cells previously induced with NVR or ritonavir did not reverse the decreased Rh123 cell accumulation.

Conclusions. NNRTIs show differential effects on P-gp activity and expression in vitro. Clinical studies are required to elucidate the clinical importance of potential drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. E. De Clercq. The role of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection. Antiviral Res. 38:153–179 (1998).

    Google Scholar 

  2. D. V. Havlir and J. M. Lange: New antiretrovirals and new combinations. AIDS 12SupplA:S165–S174 (1998).

    Google Scholar 

  3. I. Fogelman, L. Lim, R. Bassett, P. Volberding, M. A. Fischl, K. Stanley, and D. J. Cotton. Prevalence and patterns of use of concomitant medications among participants in three multicenter human immunodeficiency virus type I clinical trials. AIDS Clinical Trials Group (ACTG). J. Acquir. Immune Defic. Syndr. 7: 1057–1063 (1994).

    Google Scholar 

  4. P. Riska, M. Lamson, T. MacGregor, J. Sabo, S. Hattox, J. Pav, and J. Keirns. Disposition and biotransformation of the antiretroviral drug nevirapine in humans. Drug Metab. Dispos. 27:895–901 (1999).

    Google Scholar 

  5. C. L. Cheng, D. E. Smith, P. L. Carver, S. R. Cox, P. B. Watkins, D. S. Blake, C. A. Kauffman, K. M. Meyer, G. L. Amidon, and P. L. Stetson. Steady-state pharmacokinetics of delavirdine in HIVpositive patients: effect on erythromycin breath test. Clin. Pharmacol. Ther. 61:531–543 (1997).

    Google Scholar 

  6. R. L. Voorman, S. M. Maio, N. A. Payne, Z. Zhao, K. A. Koeplinger, and X. Wang. Microsomal metabolism of delavirdine: evidence for mechanism-based inactivation of human cytochrome P450 3A. J. Pharmacol. Exp. Ther. 287:381–388 (1998).

    Google Scholar 

  7. L. L. von Moltke, D. J. Greenblatt, B. W. Granda, G. M. Giancarlo, S. X. Duan, J. P. Daily, J. S. Harmatz, and R. I. Shader. Inhibition of human cytochrome P450 isoforms by nonnucleoside reverse transcriptase inhibitors. J. Clin. Pharmacol. 41:85–91 (2001).

    Google Scholar 

  8. J. C. Adkins and S. Noble. Efavirenz. Drugs 56:1055–1064 (1998).

    Google Scholar 

  9. F. L. Altice, G. H. Friedland, and E. L. Cooney. Nevirapine induced opiate withdrawal among injection drug users with HIV infection receiving methadone. AIDS 13:957–962 (1999).

    Google Scholar 

  10. M. Barry, F. Mulcahy, C. Merry, S. Gibbons, and D. Back. Pharmacokinetics and potential interactions amongst antiretroviral agents used to treat patients with HIV infection. Clin. Pharmacokinet. 36:289–304 (1999).

    Google Scholar 

  11. X. Duval, V. Le Moing, C. Longuet, C. Leport, J. L. Vilde, C. Lamotte, G. Peytavin, and R. Farinotti. Efavirenz-induced decrease in plasma amprenavir levels in human immunodeficiency virus-infected patients and correction by ritonavir. Antimicrob. Agents Chemother. 44:2593 (2000).

    Google Scholar 

  12. I. Sugawara, I. Kataoka, Y. Morishita, H. Hamada, T. Tsuruo, S. Itoyama, and S. Mori. Tissue distribution of P-glycoprotein encoded by a multidrug-resistant gene as revealed by a monoclonal antibody, MRK 16. Cancer Res. 48:1926–1929 (1988).

    Google Scholar 

  13. C. Cordon-Cardo, J. P. O’Brien, D. Casals, L. Rittman-Grauer, J. L. Biedler, M. R. Melamed, and J. R. Bertino. Multidrugresistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc. Natl. Acad. Sci. USA 86:695–698 (1989).

    Google Scholar 

  14. V. Ling, N. Kartner, T. Sudo, L. Siminovitch, and J. R. Riordan. Multidrug-resistance phenotype in Chinese hamster ovary cells. Cancer Treat. Rep. 67:869–874 (1983).

    Google Scholar 

  15. M. D. Perloff, L. L. von Moltke, J. M. Fahey, J. P. Daily, and D. J. Greenblatt. Induction of P-glycoprotein expression by HIV protease inhibitors in cell culture. AIDS 14:1287–1289 (2000).

    Google Scholar 

  16. R. B. Kim, M. F. Fromm, C. Wandel, B. Leake, A. J. Wood, D. M. Roden, and G. R. Wilkinson. The drug transporter Pglycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J. Clin. Invest. 101:289–294 (1998).

    Google Scholar 

  17. L. Profit, V. A. Eagling, and D. J. Back. Modulation of P-glycoprotein function in human lymphocytes and Caco-2 cell monolayers by HIV-1 protease inhibitors. AIDS 13:1623–1627 (1999).

    Google Scholar 

  18. M. Pinto, S. Robine-Leon, M. Appay, M. Kedinger, N. Triadou, E. Dussaulx, B. Lacroix, P. Simon-Assmann, K. Haffen, J. Fogh, and A. Zweibaum. Enterocyte-like differentiation and polarisation of the human colon carcinoma cell line Caco-2 in culture. Biol. Cell 47:323–330 (1983).

    Google Scholar 

  19. A. Quaroni and J. Hochman. Developement of intestinal cell culture models for drug transport and metabolism studies. Adv. Drug Deliv. Rev. 22:3–52 (1996).

    Google Scholar 

  20. P. Artursson, K. Palm, and K. Luthman. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 22:67–84 (1996).

    Google Scholar 

  21. R. Yumoto, T. Murakami, Y. Nakamoto, R. Hasegawa, J. Nagai, and M. Takano. Transport of rhodamine 123, a P-glycoprotein substrate, across rat intestine and Caco-2 cell monolayers in the presence of cytochrome P-450 3A-related compounds. J. Pharmacol. Exp. Ther. 289:149–155 (1999).

    Google Scholar 

  22. E. G. Schuetz, W. T. Beck, and J. D. Schuetz. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol. Pharmacol. 49:311–318 (1996).

    Google Scholar 

  23. C. E. Herzog, M. Tsokos, S. E. Bates, and A. T. Fojo. Increased mdr-1/P-glycoprotein expression after treatment of human colon carcinoma cells with P-glycoprotein antagonists. J. Biol. Chem. 268:2946–2952 (1993).

    Google Scholar 

  24. B. H. Tom, L. P. Rutzky, M. M. Jakstys, R. Oyasu, C. I. Kaye, and B. D. Kahan. Human colonic adenocarcinoma cells. I. Establishment and description of a new line. In Vitro 12:180–191 (1976).

    Google Scholar 

  25. J. S. Lee, K. Paull, M. Alvarez, C. Hose, A. Monks, M. Grever, A. T. Fojo, and S. E. Bates. Rhodamine efflux patterns predict Pglycoprotein substrates in the National Cancer Institute drug screen. Mol. Pharmacol. 46:627–638 (1994).

    Google Scholar 

  26. M. D. Perloff. L. L. Von Moltke, J. E. Marchand, and D. J. Greenblatt: Ritonavir induces P-glycoprotein expression, multidrug resistance-associated protein (MRP1) expression, and drug transporter-mediated activity in a human intestinal cell line. J. Pharm. Sci. 90:1829–1837 (2001).

    Google Scholar 

  27. W. W. Freimuth. Delavirdine mesylate, a potent non-nucleoside HIV-1 reverse transcriptase inhibitor. Adv. Exp. Med. Biol. 394: 279–289 (1996).

    Google Scholar 

  28. T. Tateishi, H. Nakura, M. Asoh, M. Watanabe, M. Tanaka, T. Kumai, and S. Kobayashi. Multiple cytochrome P-450 subfamilies are co-induced with P-glycoprotein by both phenothiazine and 2-acetylaminofluorene in rats. Cancer Lett. 138:73–79 (1999).

    Google Scholar 

  29. E. L. Gujaeva, V. A. Kobliakov, T. N. Zabotina, E. J. Rybalkina, and A. A. Stravrovskaya. Coordinated regulation of P-glycoprotein activity and cytochrome P-4501A induction in sublines of rat hepatoma McA RH7777 cells with different levels of colchicine resistance. Membr. Cell Biol. 12:481–488 (1998).

    Google Scholar 

  30. L. L. von Moltke, D. J. Greenblatt, J. M. Grassi, B. W. Granda, S. X. Duan, S. M. Fogelman, J. P. Daily, J. S. Harmatz, and R. I. Shader. Protease inhibitors as inhibitors of human cytochromes P450: high risk associated with ritonavir. J. Clin. Pharmacol. 38: 106–111 (1998).

    Google Scholar 

  31. V. J. Wacher, C. Y. Wu, and L. Z. Benet. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol. Carcinog. 13:129–134 (1995).

    Google Scholar 

  32. C. Wandel, R. B. Kim, S. Kajiji, P. Guengerich, G. R. Wilkinson, and A. J. Wood. P-glycoprotein and cytochrome P-450 3A inhibition: dissociation of inhibitory potencies. Cancer Res. 59:3944–3948 (1999).

    Google Scholar 

  33. D. Runge, C. Kohler, V. E. Kostrubsky, D. Jager, T. Lehmann, D. M. Runge, U. May, D. B. Stolz, S. C. Strom, W. E. Fleig, and G. K. Michalopoulos. Induction of cytochrome P450 (CYP)1A1, CYP1A2, and CYP3A4 but not of CYP2C9, CYP2C19, multidrug resistance (MDR-1) and multidrug resistance associated protein (MRP-1) by prototypical inducers in human hepatocytes. Biochem. Biophys. Res. Commun. 273:333–341 (2000).

    Google Scholar 

  34. R. B. Kim, C. Wandel, B. Leake, M. Cvetkovic, M. F. Fromm, P. J. Dempsey, M. M. Roden, F. Belas, A. K. Chaudhary, D. M. Roden, A. J. Wood, and G. R. Wilkinson. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm. Res. 16:408–414 (1999).

    Google Scholar 

  35. S. Ibrahim, J. Peggins, A. Knapton, T. Licht, and A. Aszalos. Influence of antipsychotic, antiemetic, and Ca(2+) channel blocker drugs on the cellular accumulation of the anticancer drug daunorubicin: P-glycoprotein modulation. J. Pharmacol. Exp. Ther. 295:1276–1283 (2000).

    Google Scholar 

  36. R. H. Stephens, C. A. O’Neill, A. Warhurst, G. L. Carlson, M. Rowland, and G. Warhurst. Kinetic profiling of P-glycoproteinmediated drug efflux in rat and human intestinal epithelia. J. Pharmacol. Exp. Ther 296:584–591 (2001).

    Google Scholar 

  37. V. D. Makhey, A. Guo, D. A. Norris, P. Hu, J. Yan, and P. J. Sinko. Characterization of the regional intestinal kinetics of drug efflux in rat and human intestine and in Caco-2 cells. Pharm. Res. 15:1160–1167 (1998).

    Google Scholar 

  38. P. Artursson and J. Karlsson. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. 175:880–885 (1991).

    Google Scholar 

  39. C. A. Bailey, P. Bryla, and A. W. Malick. The use of the intestinal epithelial cell culture model, Caco-2, in pharmaceutical development. Adv. Drug Deliv. Rev. 22:85–103 (1996).

    Google Scholar 

  40. A. Braun, S. Hammerle, K. Suda, B. Rothen-Rutishauser, M. Gunthert, S. D. Kramer, and H. Wunderli-Allenspach. Cell cultures as tools in biopharmacy. Eur. J. Pharm. Sci. 11Suppl2:S51–S60 (2000).

    Google Scholar 

  41. A. Aszalos, K. Thompson. J. J. Yin, and D. D. Ross: Combinations of P-glycoprotein blockers, verapamil, PSC833, and cremophor act differently on the multidrug resistance associated protein (MRP) and on P-glycoprotein (Pgp). Anticancer Res. 19: 1053–1064 (1999).

    Google Scholar 

  42. T. Koudriakova, E. Iatsimirskaia, I. Utkin, E. Gangl, P. Vouros, E. Storozhuk, D. Orza, J. Marinina, and N. Gerber. Metabolism of the human immunodeficiency virus protease inhibitors indinavir and ritonavir by human intestinal microsomes and expressed cytochrome P4503A4/3A5: mechanism-based inactivation of cytochrome P4503A by ritonavir. Drug Metab. Dispos. 26:552–561 (1998).

    Google Scholar 

  43. M. E. Fitzsimmons and J. M. Collins. Selective biotransformation of the human immunodeficiency virus protease inhibitor saquinavir by human small-intestinal cytochrome P4503A4: potential contribution to high first-pass metabolism. Drug Metab. Dispos. 25:256–266 (1997).

    Google Scholar 

  44. C. G. Lee, M. M. Gottesman, C. O. Cardarelli, M. Ramachandra, K. T. Jeang, S. V. Ambudkar, I. Pastan, and S. Dey. HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry 37:3594–3601 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Greenblatt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Störmer, E., von Moltke, L.L., Perloff, M.D. et al. Differential Modulation of P-Glycoprotein Expression and Activity by Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors in Cell Culture. Pharm Res 19, 1038–1045 (2002). https://doi.org/10.1023/A:1016430825740

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016430825740

Navigation