Skip to main content
Log in

Considerations on the Astroglial Architecture and the Columnar Organization of the Cerebral Cortex

  • Commentary
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Present knowledge on astroglial roles in brain organization and function indicates that these cells can regulate the extracellular ionic composition and modulate neuronal activity. In this regard, the “panglial synctium” formed by electrically and chemically coupled stellate astrocytes (“general mammalian” architecture) is believed to provide an intracellular pathway for the redistribution of ions and molecules within the cerebral cortex. Long astroglial interlaminar processes (“primate-specific” architecture) that run parallel to apical dendrites in the cerebral cortex of primates, may provide additional properties to the glial participation in cortical physiology and function. Since these processes are exclusively present within the primate order, functional models of cortical computations for these species should incorporate the astroglial interlaminar architecture in addition to the panglial synctium. This study analyzes possible implications of interlaminar astroglial processes, for the regulation of the extracellular ionic composition and segregation of functional columns in the cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  • Araque, A., Parpura, V., Sanzgiri, R. P., and Haydon, P. G. (1999). Tripartite synapses: Glia, the acknowledged partner. Trends Neurosci. 22:208–214.

    Google Scholar 

  • Bonin, G. von, and Mehler, W. R. (1971). On columnar arrangement of nerve cells in cerebral cortex. Brain Res. 27:1–9.

    Google Scholar 

  • Colombo, J. A. (1996). Interlaminar astroglial cell processes in the cerebral cortex of adult monkeys but not of adult rats. Acta Anat. 155:57–62.

    Google Scholar 

  • Colombo, J. A. (2001). A columnar-supporting mode of astroglial architecture in the cerebral cortex of adult primates? Neurobiology 9:1–16.

    Google Scholar 

  • Colombo, J. A., Fuchs, E., Härtig, W., Marotte, L., and Puissant, V. (2000). “Rodent-like” and “primatelike” types of astroglial architecture in the cerebral cortex of mammals. A comparative study. Anat. Embriol. 201:111–120.

    Google Scholar 

  • Colombo, J. A., Härtig,W., Lipina, S., and Bons,N. (1998). Astroglial interlaminar processes in the cerebral cortex of prosimians and old world monkeys. Anat. Embriol. 197:369–376.

    Google Scholar 

  • Colombo, J. A., Quinn, B., and Puissant, V. (2002). Disruption of astroglial interlaminar processes in Alzheimer's Disease. Brain Res. Bull. 68:235–242.

    Google Scholar 

  • Colombo, J. A., Schleicher, A., and Zilles, K. (1999a). Patterned distribution of immunoreactive astroglial processes in the striate (V1) cortex of new world monkeys. Glia 25:85–92.

    Google Scholar 

  • Colombo, J. A., Yáñez, A.,and Lipina, S. (1999b). Disruption of patterns of immunoreactive glial fibrillary acidic protein processes in the Cebus Apella striate cortex following loss of visual input. J. Brain Res. 39:447–451.

    Google Scholar 

  • Colombo, J. A., Yáñez, A., Puissant, V., and Lipina S. (1995). Long interlaminar astroglial cell proceses in the cortex of adult monkeys. J. Neurosci. Res. 40:551–556.

    Google Scholar 

  • Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S., and Smith, S. J. (1990). Glutamate induces calcium waves in cultured astrocytes: Long-range glial signaling. Science 247:470–473.

    Google Scholar 

  • Fuxe, K., and Agnati, L. F. (1991). Two principal modes of electrochemical communication in the brain: Volume versus wiring transmission. In Fuxe, K., and Agnati, L. F. (eds.), Volume Transmission in the Brain: Novel Mechanisms for Neural Transmission, Raven Press, New York, pp. 1–9.

    Google Scholar 

  • Giaume,C., and McCarthy, K.D. (1996). Control of Gap-Junctional communication in astrocytic networks. Trends Neurosci. 19:319–325.

    Google Scholar 

  • Höfer, T., Venance, L., and Giaume, C. (2002). Control and plasticity of intercellular calcium waves in astrocytes: A modeling approach. J. Neurosci. 22:4850–4859.

    Google Scholar 

  • Hertz, L. (1965). Possible role of neuroglia:Apotassium-mediated-neuronal-neuroglial-neuronal impulse transmission system. Nature 206:1091–1094.

    Google Scholar 

  • Hubel, D. H., and Wiesel, T.N. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28:229–289.

    Google Scholar 

  • Jakob, C., and Onelli, C. (1913). EsEn “Atlas del cerebro de ls mamíferos de lo República Argentina.”Guillermo Kraft, Buenos Aires.

    Google Scholar 

  • Kuffler, S.W., Nicholls, J.G., and Orkand, R. K. (1966). Physiological properties of glial cells in the central nervous system of amphiba. J. Neurosci. 29:768–787.

    Google Scholar 

  • Lewis, T. J., and Rinzel, J. (2000). Self-organized synchronous oscillations in a network of excitable coupled gap junctions. Netw. Comput. Neural Syst. 11:299–320.

    Google Scholar 

  • Lorente de No, R. (1938). The cerebral cortex: Architecture, intracortical connections and motor projections. In Fulton (ed.), Physiology of the Nervous System, Oxford University Press, London, pp. 290–339.

    Google Scholar 

  • Marín-Padilla, M. (1992). Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectures: A unifying theory. J. Comp. Neurol. 321:223–240.

    Google Scholar 

  • Mountcastle, V. B. (1957). Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol. 20:408–434.

    Google Scholar 

  • Mountcastle, V. B. (1997). The columnar organization of the neocortex. Brain 120:701–722.

    Google Scholar 

  • Mugnaini, E. (1986). Cell junctions of astrocytes, ependyma, and related cells in the mammalian central nervous system, with emphasis on the hypothesis of a generalized functional synctium of supporting cells. In Fedoroff, S., and Vernadakis, A. (eds.), Astrocytes: Development, Morphology, and Regional Specialization of Astrocytes, Vol. 1, Academic Press, London, pp. 329–371.

    Google Scholar 

  • Nedergaard, M. (1994). Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263:1768–1771.

    Google Scholar 

  • Newman, E. A. (1984). Regional specialization of retinal glial cell membrane. Nature 309:155–157.

    Google Scholar 

  • Pfrieger, F.W., and Barres, B.A. (1997). Synaptic efficacy enhanced by glial cells in vitro. Science 277:1684–1687.

    Google Scholar 

  • Powell, T. P. S., and Mountcastle, V. B. (1959). Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: A correlation of findings obtained in analysis with cytoarchitecture. Bull. Johns Hopkins Hosp. 105:133–162.

    Google Scholar 

  • Rakic, P. (1995). Corticogenesis in human and non human primates. In Gazzaniga, M. S. (ed.), The Cognitive Neuroscience, MIT Press, London, England, pp. 127–145.

    Google Scholar 

  • Reichenbach, A., Neumann, M., and Brückner,G. (1987). Cell length to diameter relation of rat fetal radial glia—Does impairedKC transport capacity of long thin cells cause their perinatal transformation into multipolar astrocytes? Neurosci. Lett. 73:95–100.

    Google Scholar 

  • Reichenbach, A., Siegel, A., Senitz, D., and Smith, T. G., Jr. (1992). A comparative fractal analysis of various mammalian astroglial cell types. Neuroimage 1:69–77.

    Google Scholar 

  • Reisin, H. D., and Colombo, J. A. (2002). Astroglial interlaminar processes in human cerebral cortex: Variations in cytoskeletal profiles. Brain Res. 937:51–57.

    Google Scholar 

  • Rice, M. E., Okada, Y., C., and Nicholson, C. (1993). Anisotropic and heterogeneous difussion in the turtle cerebellum: Implications in volume trasmission. J. Neurophysiol. 70:2035–2043.

    Google Scholar 

  • Singer,W. (1995). Development and plasticity of cortical processing architectures. Science 270:758–764.

    Google Scholar 

  • Somjen, G. G. (1979). Extracellular potassium in the mammalian central nervous system. Ann. Rev. Physiol. 41:159–177.

    Google Scholar 

  • Ullian, E. M., Sapperstein, S. K., Cristopherson, K. S., and Barres, B.A. (2001). Control of synapse number by glia. Science 291:657–661.

    Google Scholar 

  • Zahs, K. R. (1998). Heterotypic coupling between glial cells of the mammalian central nervous system. Glia 24:85–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reisin, H.D., Colombo, J.A. Considerations on the Astroglial Architecture and the Columnar Organization of the Cerebral Cortex. Cell Mol Neurobiol 22, 633–644 (2002). https://doi.org/10.1023/A:1021892521180

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021892521180

Navigation