Skip to main content
Log in

Novel Mechanisms of Action of Three Antiepileptic Drugs, Vigabatrin, Tiagabine, and Topiramate

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Epilepsy, a functional disturbance of the CNS and induced by abnormal electrical discharges, manifests by recurrent seizures. Although new antiepileptic drugs have been developed during recent years, still more than one third of patients with epilepsy are refractory to treatment. Therefore, the search for new mechanisms that can regulate cellular excitability are of utmost importance. Three currently available drugs are of special interest because they have novel mechanisms of action and are especially effective for partial onset seizures. Vigabatrin is a selective and irreversible GABA-transaminase inhibitor that greatly increases whole-brain levels of GABA. Tiagabine is a potent inhibitor of GABA uptake into neurons and glial cells. Topiramate is considered to produce its antiepileptic effect through several mechanisms, including modification of Na+ -and/or Ca2+-dependent action potentials, enhancement of GABA-mediated Cl fluxes into neurons, and inhibition of kainate-mediated conductance at glutamate receptors of the AMPA/kainate type. This review will discuss these mechanisms of action at the cellular and molecular levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Stefan, H., Halasz P., Gil-Nagel, A., Shorvon, S., Bauer, G., Ben Menachem, E., Perucca, E., Wieser, H. G., and Steinlein, O. 2001. Recent advances in the diagnosis and treatment of epilepsy. Eur. J. Neurol. 8:519–539.

    PubMed  Google Scholar 

  2. Kwan, P. and Brodie, M. J. 2000. Early identification of refractory epilepsy. N. Engl. J. Med. 342:314–319.

    Google Scholar 

  3. Schwartz, R. D. 1988. The GABAA receptor-gated ion channel: Biochemical and pharmacological studies of structure and function. Biochem. Pharmacol. 37:3369–3375.

    Google Scholar 

  4. Salt, T. E., Eaton, S. A., and Turner, J. P. 1996. Characterization of the metabotropic glutamate receptors (mGluRs) which modulate GABA-mediated inhibition in the ventrobasal thalamus. Neurochem. Int. 29:317–322.

    PubMed  Google Scholar 

  5. Hamberger, A. and van Gelder, N. M. 1993. Metabolic manipulation of neuronal tissue to counter the hypersynchronous excitation of migraine and epilepsy. Neurochem. Res. 18:503–509.

    PubMed  Google Scholar 

  6. Greengard, P. 2001. The neurobiology of slow synaptic transmission. Science 294:1024–1030.

    PubMed  Google Scholar 

  7. Traub, R. D., Jefferys, J. G., and Whittington, M. A. 1999. Functionally relevant and functionally disruptive (epileptic) synchronized oscillations in brain slices. Adv. Neurol. 79:709–724.

    PubMed  Google Scholar 

  8. Ben-Ari, Y. and Cossart, R. 2000. Kainate, a double agent that generates seizures: Two decades of progress. Trends Neurosci. 23:580–587.

    PubMed  Google Scholar 

  9. Lee, M C., Rho, J. L., Kim, M. K., Woo, Y. J., Kim, J. H., Nam, S. C., Suh, J. J., Chung, W. K., Moon, J. D., and Kim, H. I. 2001. c-JUN expression and apoptotic cell death in kainate-induced temporal lobe epilepsy. J. Korean Med. Sci. 16:649–656.

    PubMed  Google Scholar 

  10. Frantseva, M. V., Velazquez, J. L., Hwang, P. A., and Carlen, P. L. 2000. Free radical production correlates with cell death in an in vitro model of epilepsy. Eur. J. Neurosci. 12:1431–1439.

    PubMed  Google Scholar 

  11. Sattler, R. and Tymianski, M. 2000. Molecular mechanisms of calcium-dependent excitotoxicity. J. Mol. Med. 78:3–13.

    PubMed  Google Scholar 

  12. Mattson, M. P., Keller, J. N., and Begley, J. G. 1998. Evidence for synaptic apoptosis. Exp. Neurol. 153:35–48.

    PubMed  Google Scholar 

  13. Sonnewald, U., Westergaard, N., and Schousboe, A. 1997. Glutamate transport and metabolism in astrocytes. Glia 21:56–63.

    PubMed  Google Scholar 

  14. Reiter, R. J., Acuna-Castroviejo, D., Tan, D. X., and Burkhardt, S. 2001. Free radical-mediated molecular damage: Mechanisms for the protective actions of melatonin in the central nervous system. Ann. N. Y. Acad. Sci. 939:200–215.

    PubMed  Google Scholar 

  15. Novelli, A., Reilly, J. A., Lysko, P. G., and Henneberry, R. C. 1988. Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res. 451:205–212.

    PubMed  Google Scholar 

  16. Sanchez-Carbente, M. R. and Massieu L. 1999. Transient inhibition of glutamate uptake in vivo induces neurodegeneration when energy metabolism is impaired. J. Neurochem. 72:129–138.

    PubMed  Google Scholar 

  17. Dugan, L. L., Sensi, S. L., Canzoniero, L. M., Handran, S. D., Rothman, S. M., Lin, T. S., Goldberg, M. P., and Choi, D. W. 1995. Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J. Neurosci. 15:6377–6388.

    PubMed  Google Scholar 

  18. Reynolds, I. J. and Hastings, T. G. 1995. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J. Neurosci. 15:3318–3327.

    PubMed  Google Scholar 

  19. Perez Velazquez, J. L., Frantseva, M. V., and Carlen, P. L. 1997. In vitro ischemia promotes glutamate-mediated free radical generation and intracellular calcium accumulation in hippocampal pyramidal neurons. J. Neurosci. 17:9085–9094.

    PubMed  Google Scholar 

  20. Butcher, S. P., Jacobson, I., and Hamberger, A. 1988. On the epileptogenic effects of kainic acid and dihydrokainic acid in the dentate gyrus of the rat. Neuropharmacology 27:375–381.

    PubMed  Google Scholar 

  21. Elliot, K. A. C. and van Gelder, N. M. 1958. Occlusion and metabolism of gamma aminobutyric acid by brain tissue. J. Neurochem. 3:28–40.

    PubMed  Google Scholar 

  22. Jung, M. F., Lippert, B., Metcalf, B. W., Bohlen, P., and Schechter, P. J. 1977. Gamma-vinyl GABA (4–amino-hex-5–enoic acid), a new selective irreversible inhibitor of GABA-T: Effects on brain GABA metabolism in mice. J. Neurochem. 29:797–802.

    PubMed  Google Scholar 

  23. Gale, K. 1986. Role of the substantia nigra in GABA-mediated anticonvulsant actions. In: Delgado-Escueta, A. V., Ward, A. A., Woodbury, D. M., and Porter, R. J. (eds.). Basic Mechanisms of the Epilepsies: Molecular and Cellular Approaches. 44:343–364. Advances in Neurology.

    Google Scholar 

  24. Schechter, P. J., Tranier, Y., and Grove, J. 1979. Attempts to correlate alterations in brain GABA metabolism by GABA-T inhibitors with their anticonvulsant effects. Pages 43–57, in Mandel, P., DeFeudes, E. V. (eds.). GABA-Biochemistry and CNS Functions. New York, Plenum Press.

    Google Scholar 

  25. Schechter, P. J., Tranier, Y., Jung, M. J., and Bohlen, P. 1977. Audiogenic seizure protection by elevated brain GABA concentration in mice: effects of gamma-acetylenic gaba and gammavinyl GABA, two irreversible GABA-T inhibitors. Eur. J. Pharmacol. 45:319–328.

    PubMed  Google Scholar 

  26. Meldrum, B. S. and Horton, R. 1978. Blockade of epileptic responses in the photosensitive baboon, Papio papio, by two irreversible inhibitors of GABA transaminase, gamma-acetylenic GABA (4–amino-hex-5–ynoic acid) and gamma-vinyl GABA (4–amino-hex-5–enoic acid). Psychopharmacology 59:47–50.

    PubMed  Google Scholar 

  27. Grove, J., Schechter, P. J., Tell, G., Koch-Weser, J., Sjoerdsma, A., Warter, J. M., Marescaux, C., and Rumbach, L. Increased gamma-aminobutyric acid (GABA), homocarnosin and beta-ala-nine in cerebrospinal fluid of patients treated with gamma-vinyl GABA (4–amino-hex-5–enoic acid). Life Sci. 28:2431–2439.

  28. Schechter, P. J., Hanke, N. F. J., Grove J., Huebert, N., and Sjoerdsma, A. 1984. Biochemical and clinical effects of gamma-vinyl GABA in patients with epilepsy. Neurology 134:34–39.

    Google Scholar 

  29. Pitkänen, A., Halonen, T., Ylinen, A., and Riekkinen, P. 1987. Somatostatin, β-endorphin, and prolactin levels in human cerebrospinal fluid during the gamma-vinyl GABA treatment of patients with complex partial seizures. Neuropeptides 9:185–195.

    PubMed  Google Scholar 

  30. Sivenius, M. R. J., Ylinen, A., Murros, K., Matilainen, R., and Riekkinen, P. 1987. Double blind dose-reduction study of vigabatrin in complex partial epilepsy. Epilepsia 28:688–692.

    PubMed  Google Scholar 

  31. Ben-Menachem, E., Persson, L. I., and Mumford, J. P. 1991. Effect of long term vigabatrin therapy on selected CSF neurotransmitter concentrations. J. Child. Neurology 6 (Suppl 2):11–16.

    Google Scholar 

  32. Ben-Menachem, E., Persson, L., Schechter, P. J., Haegele, K. D., Huebert, N.,Hardenberg, J., Dahlgren, L., and Mumford, J. P. 1988. Effects of single doses of vigabatrin on CSF concentrations of GABA, homocarnosine, homovanillic acid and 5–hydroxyindoleacedic acid in patients with complex partial seizures. Epilepsy Res. 2:96–101.

    PubMed  Google Scholar 

  33. Ben-Menachem, E., Mumford, J., and Hamberger, A. 1993. Effect of long-term vigabatrin therapy on GABA and other amino acid concentrations in the central nervous system: A case study. Epilepsy Res. 16:241–243.

    PubMed  Google Scholar 

  34. Ben-Menachem, E., Persson, L. I., Schechter, P. J., Haegele, K. D., Huebert, N., Hardenberg, J., Dahlgren, L., and Mumford, J. P. 1989. The effect of different vigabatrin treatment regimens on CSF biochemistry and seizure control in epileptic patients. Br. J. Clin. Pharmac. 27:79S-85S.

    Google Scholar 

  35. Kälviäinen, R., Halonen, T., Pitkänen, A., and Riekkinen, P. J. 1993. Amino acid levels in the cerebrospinal fluid of newly diagnosed epileptic patients: Effect of vigabatrin and carbamazepine monotherapy. J. Neurochem. 60:1244–1250.

    PubMed  Google Scholar 

  36. Petroff, O. A. C., Rothman, D. L., Behar, K. L., and Mattson, R. H. 1995. Initial observations of effect of vigabatrin on in vivo 1H spectroscopic measurements of γ-aminobutyric acid, glutamate, and glutamine in human brain. Epilepsia 36:457–464.

    PubMed  Google Scholar 

  37. Spanaki, M. V., Siegel, H., Kopylev, L., Fazilat, S., Dean, A., Liow, K., Ben-Menachem, E., Gaillard, W. D., and Theodore, W. H. 1999. The effect of vigabatrin (gamma-vinyl GABA) on cerebral blood flow and metabolism. Neurology 53:1518–1522.

    PubMed  Google Scholar 

  38. Richens, A. 1991. Pharmacology and clinical pharmacology of vigabatrin. J. Child. Neurology 6:2S7–2S10.

    Google Scholar 

  39. Dalby, N. O. 2000. GABA-level increasing and anticonvulsant effects of three different GABA uptake inhibitors. Neuropharmacology 39:2399–2407.

    PubMed  Google Scholar 

  40. Sills, G. J., Patsalos, P. N., Butler, E., Forrest, G., Ratnaraj, N., and Brodie, M. J. 2001. Visual field constriction: Accumulation of vigabatrin but not tiagabine in the retina. Neurology 57:196–200.

    PubMed  Google Scholar 

  41. Kalviainen, R. 2001. Long-term safety of tiagabine. Epilepsia 42 (Suppl 3):46–48.

    Google Scholar 

  42. Marson, A. G., Kadir, Z. A., Hutton, J. L., and Chadwick, D. W. 1997. The new antiepileptic drugs: A systematic review of their efficacy and tolerability. Epilepsia 38:859–880.

    PubMed  Google Scholar 

  43. Shank, R. P., Gardocki, J. F., Vaught, J. L., Davis, C. B., Schupsky, J. J., Raffa, R. B., Dodgson, S. J., Nortey, S. O., and Maryanoff, B. E. 1994. Topiramate: preclinical evaluation of structurally novel anticonvulsant. Epilepsia 35:450–460.

    PubMed  Google Scholar 

  44. Montouris, G. D., Biton, V., and Rosenfeld, W. E. 2000. Non-focal generalized tonic-clonic seizures: response during long-term topiramate treatment. Topiramate YTC/YTCE Study Group. Epilepsia 41 (Suppl 1):S77–S81.

    PubMed  Google Scholar 

  45. Sachdeo, R. C., Glauser, T. A., Ritter, F., Reife, R., Lim, P., and Pledger, G. 1999. A double-blind, randomized trial of topiramate in Lennox-Gastaut syndrome. Topiramate YL Study Group. Neurology 52:1882–1887.

    PubMed  Google Scholar 

  46. Perucca, E. 2001. Clinical pharmacology and therapeutic use of the new antiepileptic drugs. Fundam Clin. Pharmacol. 15:405–417.

    PubMed  Google Scholar 

  47. Zona, C., Ciotti, M. T., and Avoli, M. 1997. Topiramate attenuates voltage-gated sodium currents in rat cerebellar granule cells. Neurosci. Lett. 231:123–126.

    PubMed  Google Scholar 

  48. White, H. S., Brown, S. D., Woodhead, J. H., Skeen, G. A., and Wolf, H. H. 1997. Topiramate enhances GABA-mediated chloride flux and GABA-evoked chloride currents in murine brain neurons and increases seizure threshold. Epilepsy Res. 28:167–179.

    PubMed  Google Scholar 

  49. Gordey, M., DeLorey, T. M., and Olsen, R. W. 2000. Differential sensitivity of recombinant GABA(A) receptors expressed in Xenopus oocytes to modulation by topiramate. Epilepsia 41 (Suppl 1):S25–S29.

    PubMed  Google Scholar 

  50. Gibbs, J. W. III., Sombati, S., DeLorenzo, R. J., and Coulter, D. A. 2000. Cellular actions of topiramate: Blockade of kainateevoked inward currents in cultured hippocampal neurons. Epilepsia 41 (Suppl 1):S10–S16.

    Google Scholar 

  51. Ängehagen, M., Shank, R., Hansson, E., Rönnbäck, L., and Ben-Menachem, E. 2001. Topiramate affects the ability of protein kinase to phosphorylate glutamate receptors activated by kainate. Epilepsia 42 (Suppl 7):S10.

    Google Scholar 

  52. Dodgson. S. J., Shank, R. P., and Maryanoff, B. E. 2000. Topiramate as an inhibitor of carbonic anhydrase isoenzymes. Epilepsia 41 (Suppl 1):S35–S39.

    Google Scholar 

  53. White, H. S. 1999. Comparative anticonvulsant and mechanistic profile of the established and newer antiepileptic drugs. Epilepsia 40 (Suppl 5):S2–S10.

    Google Scholar 

  54. Herrero, A. I., Del Olmo, N., Gonzales-Escalada, J. R. and Solis, J. M. 2002. Two new actions of topiramate: Inhibition of depolarizing GABA(A)-mediated responses and activation of a potassium conductance. Neuropharmacology 42:210–220.

    PubMed  Google Scholar 

  55. Huang, R. D., Smith, M. F., and Zahler, W. L. 1982. Inhibition of forskolin-activated adenylate cyclase by ethanol and other solvents. J. Cyclic Nucleotide Res. 8:385–394.

    PubMed  Google Scholar 

  56. Chijiwa, T., Mishima, A., Hagiwara, M., Sano, M., Hayashi, K., Inoue, T., Naito, K., Toshioka, T., and Hidaka, H. 1990. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2–(p-bromocinnamylamino)ethyl]-5–isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J. Biol. Chem. 265:5267–5272.

    PubMed  Google Scholar 

  57. Raman, I. M., Tong, G., and Jahr, C. E. 1996. Beta-adrenergic regulation of synaptic NMDA receptors by cAMP-dependent protein kinase. Neuron 16:415–421.

    PubMed  Google Scholar 

  58. Aker, R. G., Ozkara, C., Dervent, A., and Yilmaz Onat, F. 2002. Enhancement of spike and wave discharges by microinjection of bicuculline into the reticular nucleus of rats with absence epilepsy. Neurosci. Lett. 322:71–74.

    PubMed  Google Scholar 

  59. Panayiotopoulos, C. P. 1999. Importance of specifying the type of epilepsy. Lancet 354:2002–2003.

    Google Scholar 

  60. Panayiotopoulos, C. P., Agathonikou, A., Sharoqi, I. A., and Parker, A. P. 1997. Vigabatrin aggravates absences and absence status. Neurology 149:1467.

    Google Scholar 

  61. Slaght, S. J., Leresche, N., Deniau, J. M., Crunelli, V., and Charpier, S. 2000. Activity of thalamic reticular neurons during spontaneous genetically determined spike and wave discharges. J. Neurosci. 22:2323–2334.

    Google Scholar 

  62. Knake, S., Hamer, H. M., Schomburg, U., Oertel, W. H., and Rosenow, F. 1999. Tiagabine-induced absence status in idiopathic generalized epilepsy. Seizure 8:314–317.

    PubMed  Google Scholar 

  63. Andre, V., Ferrandon, A., Marescaux, C., Nehlig, A. 2001. Vigabatrin protects against hippocampal damage but is not antiepileptogenic in the lithium-pilocarpine model of temporal lobe epilepsy. Epilepsy Res. 47:99–117.

    PubMed  Google Scholar 

  64. Yang, Y., Li, Q., and Shuaib, A. 2000. Enhanced neuroprotec-tion and reduced hemorrhagic incidence in focal cerebral ischemia of rat by low dose combination therapy of urokinase and topiramate. Neuropharmacology 39:881–888.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Hansson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ängehagen, M., Ben-Menachem, E., Rönnbäck, L. et al. Novel Mechanisms of Action of Three Antiepileptic Drugs, Vigabatrin, Tiagabine, and Topiramate. Neurochem Res 28, 333–340 (2003). https://doi.org/10.1023/A:1022393604014

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022393604014

Navigation