Skip to main content
Log in

The Secondary Structure of Mammalian Mitochondrial 16S rRNA Molecules: Refinements Based on a Comparative Phylogenetic Approach

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Eighty six complete 16S ribosomal RNA (rRNA) gene sequences representing every mammalian order (one monotreme, 33 marsupials, 52 placentals) were employed to establish a core secondary structure model for mammalian 16S rRNA. Starting with the Gutell et al. (1993) and De Rijk et al. (1999) models, we used the criteria of potential base-pairing and positional covariance to make refinements in these models for mammalian 16S rRNA molecules. Our results suggest a mammalian secondary structure model with deletions as well as additions to the Gutell et al. (1993) and De Rijk et al. (1999) models for cow. We recognize 53 stems, 41 of which show at least some positional covariance within Mammalia. In addition, we recognize four tertiary interactions. Stems and loops have distinctly different properties, including base composition and relative substitution rates. Accounting for these differences results in improved models of sequence evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

LITERATURE CITED

  • Arnason, U., Adegoke, J. A., Bodin, K., Born, E. W., Esa, Y. B., Gullberg, A., Nilsson, M., Short, R. V., Xu, X., and Janke, A. (2002). Mammalian mitogenomic relationships and the root of the eutherian tree. Proc. Natl. Acad. Sci. USA 99: 8151–8156.

    Google Scholar 

  • Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289: 905–920.

    Google Scholar 

  • Bocchetta M., Xiong, L., and Mankin, A. S. (1998). 23S rRNA positions essential for tRNA binding in ribosomal functional sites. Proc. Natl. Acad. Sci. USA 95: 3525–3530.

    Google Scholar 

  • Brigotti, M., Rambelli, F., Zamboni, M., Montanaro, L., and Sperti, S. (1989). Effect of a-sarcin and ribosomeinactiviating proteins on the interaction of elongation factors with ribosomes. Biochem. J. 257: 723–727.

    Google Scholar 

  • Dahlberg, A. E. (1989). The functional role of ribosomal RNA in protein synthesis. Cell 57: 525–529.

    Google Scholar 

  • D'Erchia, A. M., Gissi, C., Pesole, G., Saccone, C., and Arnason, U. (1996). The guinea pig is not a rodent. Nature 381: 597–600.

    Google Scholar 

  • De Rijk, P., Robbrecht, E., de Hoog, S., Caers, A., Van de Peer, Y., and de Wachter, R. (1999). Database on the structure of large subunit ribosomal RNA. Nucleic Acids Res. 27: 174–178.

    Google Scholar 

  • Doring, T., Greuer, B., and Brimacombe, R. (1991). The three dimensional folding of ribosomal RNA: Localization of a series of intra-RNA cross-links in 23 S RNA induced by treatment of Escherichia coli 50 S ribosomal subunits with bis (2-chloroethyl)-methylamine. Nucleic Acids Res. 20: 3517–3524.

    Google Scholar 

  • El-Baradi, T. T. A. L., Raue, H. A., de Regt, V. C. H. F., Verbree, E. C., and Planta, R. J. (1985). Yeast ribosomal protein L25 binds to an evolutionary conserved site on yeast 26S and E coli 23S rRNA. EMBO J. 4: 2101–2107.

    Google Scholar 

  • Fox GE, Woese CE (1975) 5S RNA secondary structure. Nature 256: 505–507.

    Google Scholar 

  • Graur, D., Hide, W. A., Li, W.-H. (1991). Is the guinea-pig a rodent? Nature 351: 649–652.

    Google Scholar 

  • Green, R., Samaha, R. R., and Noller, H. F. (1997). Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome. J. Mol. Biol. 266: 40–50.

    Google Scholar 

  • Gutell, R. R., Gray, M. W., and Schnare, M. N. (1993). A compilation of large subunit (23S-and 23S-like) ribosomal RNA structures. Nucleic Acids Res. 21: 3055–3074 [Database Issue].

    Google Scholar 

  • Gutell, R. R., Larsen, N., and Woese, C. R. (1994). Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol. Rev. 58: 10–26.

    Google Scholar 

  • Gutell, R. R., Weiser, B., Woese, C. R., and Noller, H. F. (1985). Comparative anatomy of 16S-like ribosomal RNA. Prog. Nucleic Acid Res. 32: 155–215.

    Google Scholar 

  • Gutell, R. R., and Woese, C. R. (1990). Higher order structural elements in ribosomal RNAs: pseudo-knots and the use of noncanonical pairs. Proc. Natl. Acad. Sci. USA 87: 663–667.

    Google Scholar 

  • Hausner, T. P., Atmadja, J., and Nierhaus, K. H. (1987). Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie 69: 911–923

    Google Scholar 

  • Herr, W., Chapman, N. M., and Noller, H. F. (1979). Mechanism of ribosomal subunit association: discrimination of specific sites in 16S RNA essential for association activity. J. Mol. Biol. 130: 433–449.

    Google Scholar 

  • Huchon, D., Catzeflis, F. M., and Douzery, E. J. P. (1999). Molecular evolution of the nuclear von Willebrand factor gene in mammals and the phylogeny of rodents. Mol. Biol. Evol. 16: 577–589.

    Google Scholar 

  • Huchon, D., Madsen, O., Sibbald, M. J. B. B., Ament, K., Stanhope, M. J., Catzeflis, F., de Jong, W. W., and Douzery, J. P. (2002). Rodent phylogeny and a timescale for the evolution of Glires: Evidence from an extensive taxon sampling using three nuclear genes. Mol. Biol. Evol. 19: 1053–1065.

    Google Scholar 

  • Jow, H., Hudelot, C., Rattray, M., and Higgs, P. G. (2002). Bayesian phylogenetics using an RNA substitution model applied to early mammalian evolution. Mol. Biol. Evol. 19: 1591–1601.

    Google Scholar 

  • Kirsch, J. A. W., Flannery, T. F., Springer, M. S., and Lapointe, F.-J. (1995). Phylogeny of the Pteropodidae (Mammalia: Chiroptera) based on DNA hybridisation, with evidence for bat monophyly. Aust. J. Zool. 43: 395–428.

    Google Scholar 

  • Kraus, F., Jarecki, L., Miyamoto, M. M., Tanhauser, S. M., and Laipis, P. J. (1992). Mispairing and compensational changes during the evolution of mitochondrial ribosomal RNA. Mol. Biol. Evol. 9: 770–774.

    Google Scholar 

  • Larsen, N. (1992). Higher order interactions in 23S rRNA. Proc. Natl. Acad. Sci. USA 89: 5044–5048.

    Google Scholar 

  • Leviev, I., Levieva, S., and Garrett, R. A. (1995). Role for the highly conserved region of domain IV of 23Slike rRNA in subunit-subunit interactions at the peptidyl transferase centre. Nucleic Acids Res. 23: 1512–1517.

    Google Scholar 

  • Madsen, O., Scally, M., Douady, C. J., Kao, D. J., DeBry, R. W., Adkins, W., Amrine, H. M., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001). Parallel adaptive radiations in two major clades of placental mammals. Nature 409: 610–614.

    Google Scholar 

  • Marshall, L. G., Case, J. A., and Woodburne, M. O. (1990). Phylogenetic relationships of the families of marsupials. In: Current Mammalogy, Volume 2, H. Genoways, ed., pp. 433–505. Plenum Press, New York.

    Google Scholar 

  • Moazed, D., Robertson, J. M., and Noller, H. F. (1988). Interaction of elongation factors EF-G and EF-Tu with a conserved region in 23S RNA. Nature 334: 362–364.

    Google Scholar 

  • Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., and O'Brien, S. J. (2001a). Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–618.

    Google Scholar 

  • Murphy, W. J., Eizirik, E., O'Brien, S. J., Madsen, O., Scally, M., Douady, C. J., Teeling, E., Ryder, O. A., Stanhope, M. R., de Jong, W. W., and Springer, M. S. (2001b). Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294: 2348–2351.

    Google Scholar 

  • Noller, H. F. (1984). Structure of ribosomal RNA. Ann. Rev. Biochem. 53: 119–162.

    Google Scholar 

  • Noller, H. F. (1991). Ribosomal RNA and translation. Ann. Rev. Biochem. 60: 191–227.

    Google Scholar 

  • Noller, H. F. (1993). Peptidyl transferase: protein, ribonucleoprotein, or RNA? J. Bacteriol. 175: 5297–5300.

    Google Scholar 

  • Noller, H. F., Hoffarth, V., and Zimniak, L. (1992). Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256: 1416–1419.

    Google Scholar 

  • Novacek, M. J. (1992). Mammalian phylogeny: Shaking the tree. Nature 356: 121–125.

    Google Scholar 

  • Ogle, J. M., Brodersen, D. E., Clemons, W. M., Jr., Tarry, M. J., Carter, A. P., and Ramakrishnan, V. (2001). Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292: 897–902.

    Google Scholar 

  • Porse, B. T., and Garrett, R. A. (1995). Mapping important nucleotides in the peptidyl transferase centre of 23S rRNA using a random mutagenesis approach. J. Mol. Biol. 249: 1–10.

    Google Scholar 

  • Raue, H. A., Klootwijk, J., and Musters, W. (1988). Evolutionary conservation of structure and function of high molecular weight rRNA. Prog. Biophys. Mol. Biol. 51: 77–129.

    Google Scholar 

  • Reyes, A., Pesole, G., and Saccone, C. (1998). Complete mitochondrial DNA sequence of the fat dormouse, Glis glis: Further evidence of rodent paraphyly. Mol. Biol. Evol. 5: 499–505.

    Google Scholar 

  • Schluenzen, F., Tocilj, A., Zarivach, R., Harms, J., Gluehmann, M., Janell, D., Bashan, A., Bartels, H., Agmon, I., Franceschi, F., and Yonath, A. (2000). Structure of functionally activated small ribosomal subunit at 3.3 Å resolution. Cell 102: 615.

    Google Scholar 

  • Simmons, N. B. (1994). The case for chiropteran monophyly. Amer. Mus. Nov. 3103: 1–54.

    Google Scholar 

  • Simmons, N. B., Novacek, M. J., and Baker, R. J. (1991). Approaches, methods, and the future of the chiropteran monophyly controversy-reply. Syst. Zool. 40: 239–243.

    Google Scholar 

  • Springer, M. S., and Douzery, E. (1996). Secondary structure and patterns of evolution among mammalian mitochondrial 16S rRNA molecules. J. Mol. Evol. 43: 357–373.

    Google Scholar 

  • Springer, M. S, Hollar, L. J., and Burk, A. (1995). Compensatory substitutions and the evolution of the mitochondrial 12S rRNA gene in mammals. Mol. Biol. Evol. 12: 1138–1150.

    Google Scholar 

  • Springer, M. S., Cleven, G. C., Madsen, O., de Jong, W., Waddell, V. G., Amrine, H. M., and Stanhope, M. J. (1997). Endemic African mammals shake the phylogenetic tree. Nature 388: 61–64.

    Google Scholar 

  • Stanhope, M. J., Czelusniak, J., Si, J.-S., Nickerson, J., and Goodman, M. (1992). A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. Mol. Phylogenet. Evol. 1: 148–160.

    Google Scholar 

  • Stanhope, M. J., Waddell, V. G., Madsen, O., de Jong, W., Hedges, S. B., Cleven, G. C., Kao, D. J., and Springer, M. S. (1998). Molecular evidence for multile origins of Insectivora and for a new order of endemic African insectivore mammals. Proc. Natl. Acad. Sci. USA 95: 9967–9972.

    Google Scholar 

  • Stiege, W., Glotz, C., and Brimacombe, R. (1983). Localisation of a series of intra-RNA cross-links in the secondary and tertiary structure of 23S RNA induced by ultraviolet irradiation of Escherichia coli 50S ribosomal subunits. Nucleic Acids Res. 11: 1687–1706.

    Google Scholar 

  • Sullivan, J., and Swofford, D. L. (1997). Are Guinea pigs rodents? The importance of adequate models in molecular phylogenetics. J. Mammal. Evol. 4: 77–86.

    Google Scholar 

  • Swofford, D. L. (2002). PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods), Version 4. Sinauer Associates, Massachusetts.

    Google Scholar 

  • Swofford, D. L., Olsen, G. J., Waddell, P. J., and Hillis, D. M. (1996). Phylogenetic inference. In: Molecular Systematics, 2nd ed., D. M. Hillis, C. Moritz, and B. K. Mable, eds., pp.407–514. Sinauer Assoc., Sunderland, Massachusetts.

    Google Scholar 

  • Teeling, E. C., Madsen, O., Van Den Bussche, R. A., de Jong, W. W., Stanhope, M. J., and Springer, M. S. (2002). Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proc. Natl. Acad. Sci. USA 99: 1431–1436.

    Google Scholar 

  • Thompson, J. D., Higgins, G. D., and Gibson, T.J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positive specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    Google Scholar 

  • Turner, D. H., Sugimoto, N., and Freier, S. M. (1988). RNA structure prediction. Ann. Rev. Biophys. Chem. 17: 167–192.

    Google Scholar 

  • van Knippenberg, P. H., Formenoy, L. J., and Heus, H. A. (1990). Is there a special function for U: G basepairs in ribosomal RNA? Biochimica et Biophysica Acta 1050: 14–17.

    Google Scholar 

  • Vawter, L., and Brown, W. M. (1993). Rates and patterns of base change in the small subunit ribosomal RNA gene. Genetics 134: 597–608.

    Google Scholar 

  • Vester, B, and Garrett, R. A. (1988). The importance of highly conserved nucleotides in the binding region of chloramphenicol at the petidyl transferase centre of Escherichia coli 23S ribosomal RNA. EMBO J. 7: 3577–3587.

    Google Scholar 

  • Waddell, P. J., Okada, N., and Hasegawa, M. (1999). Towards resolving the interordinal relationships of placental mammals. Syst. Biol. 48: 1–5.

    Google Scholar 

  • Wheeler, W. C., and Honeycutt, R. L. (1988). Paired sequence difference in ribosomal RNAs: evolutionary and phylogenetic implications. Mol. Biol. Evol. 5: 90–96.

    Google Scholar 

  • Wible, J. R., and Novacek, M. J. (1988). Cranial evidence for the monophyletic origin of bats. Amer. Mus. Nov. 2911: 1–19.

    Google Scholar 

  • Wilson, D. E., and Reeder, D. M. (1993). Mammal Species of the World: A Taxonomic and Geographic Reference. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Wimberly, B. T., Brodersen, D. E., Clemons, W. M., Morgan-Warren, R. J., Carter, A. P., Vonrhein, C., Hartsch, T., and Ramakrishnan, V. (2000). Structural of the 30S ribosomal subunit. Nature 407: 327–339.

    Google Scholar 

  • Woese, C. R., Gutell, R. R., Gupta, R., and Noller, H. F. (1983). Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol. Rev. 47: 621–669.

    Google Scholar 

  • Woese, C. R., Magrum, L. J., Gupta, R., Siegel, R. B., Stahl, D. A., Kop, J., Crowford, N., Brosius, J., Gutell, R. R., Hogan, J. J., and Noller, H. F. (1980). Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. Nucleic Acids Res. 8: 2275–2293.

    Google Scholar 

  • Woese, C. R., Winker, S., and Gutell, R. R. (1990). Architecture of ribosomal RNA: Constraints on the sequence of “tetra-loops.” Proc. Natl. Acad. Sci. USA 87: 8467–8471

    Google Scholar 

  • Wool, I. G., Endo, Y., Chan, Y.-L., and Gluck, A. (1990). Structure, function, and evolution of mammalian ribosomes In: The Ribosome: Structure, Function, and Evolution, W. E. Hill, A. Dahlbert,, R. A. Garrett, P. B. Moore, D. Schlessinger, and J. R. Warner, eds., pp. 203–214. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Yang, Z. (1994). Estimating the pattern of nucleotide sutstitution. J. Mol. Evol. 39: 105–111.

    Google Scholar 

  • Yang, Z. (1996). Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol. Evol. 11: 367–373.

    Google Scholar 

  • Yang, Z. (1997). PAML, a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13: 555–556.

    Google Scholar 

  • Yusupov, M. M., Yusupova, G. Z., Baucom. A., Lieberman, K., Earnest, T. N., Cate, J. H. D., and Noller, H. F. (2001). Crystal structure of the ribosome at 5.5 Å resolution. Science 292: 883–896.

    Google Scholar 

  • Zimmerman, R. A., Thomas, C. L., and Wower, J. (1990). Structure and function of rRNA in the decoding domain and at the peptidyltransferase center In: The Ribosome: Structure, Function, and Evolution, W. E. Hill, A. Dahlbert,, R. A. Garrett, P. B. Moore, D. Schlessinger, and J. R. Warner, eds., pp. 331–347. American Society for Microbiology Washington, D.C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Springer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burk, A., Douzery, E.J.P. & Springer, M.S. The Secondary Structure of Mammalian Mitochondrial 16S rRNA Molecules: Refinements Based on a Comparative Phylogenetic Approach. Journal of Mammalian Evolution 9, 225–252 (2002). https://doi.org/10.1023/A:1022649516930

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022649516930

Navigation