Skip to main content
Log in

Pharmacokinetics, Biologic Activity, and Tolerability of Alefacept by Intravenous and Intramuscular Administration

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Alefacept, human LFA-3/IgG1 fusion protein, is currently under clinical development for the treatment of chronic plaque psoriasis and other T cell mediated disorders. This recombinant protein binds CD2 on T cells and Fcγ RIII on accessory cells (e.g., natural killer cells, macrophages), inhibiting T cell activation/proliferation and inducing selective T cell apoptosis. These effects are associated with selective reductions in memory-effector (CD4+CD45RO+; and CD8+CD45RO+) T cells. Two open-label studies were conducted in healthy male volunteers to evaluate the pharmacokinetics, biologic activity, and tolerability of a single dose of alefacept when administered as a 0.15 mg/kg 30-sec i.v. bolus (n=12), 0.04 mg/kg intramuscular (i.m.) injection (n=8), or 0.04 mg/kg 30-min intravenous (i.v.) infusion (n=8). I.V. infusion pro- duced a higher Cmax(0.96±0.26 mcg/ml vs. 0.36±0.19 mcg/ml) and a shorter Tmax(2.8±1.9 hr vs. 86±60 hr) when compared to i.m. injection. Based on AUC0-last and AUC0-∞ values, the relative bioavailability of i.m. to i.v. infusion was approximately 60%. After absorption from the i.m. injection was complete, the rate of alefacept elimination from the serum appeared consistent with the i.v. infusion half-life (approximately 12 days). Biologic activity was demonstrated by transient reductions in absolute number of CD2+ lymphocytes, with notable specificity for memory T-cell subsets. Alefacept was well tolerated; the most common adverse effects were headache, pharyngitis, rash, and myalgia. IM administration was not associated with significant local reactions. Results of these studies support i.v. bolus or i.m. administration of alefacept. An i.m. dose of approximately 150 to 200% of the i.v. dose is an appropriate and convenient alternative to i.v. administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Robert, and T. S. Kupper. Mechanisms of disease: inflammatory skin diseases, T cells, and immune surveillance. N. Engl. J. Med. 341:1817–1828 (1999).

    PubMed  Google Scholar 

  2. L. M. Austin, M. Ozawa, T. Kikuchi, I. B. Walters, and J. G. Krueger. The majority of epidermal T cells in psoriasis vulgaris lesions can produce type 1 cytokines, interferon-γ, interleukin-2, and tumor necrosis factor-α, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: a type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients. J. Invest. Dermatol. 113:752–759 (1999).

    PubMed  Google Scholar 

  3. Z. Bata-Csorgo, C. Hammerberg, J. J., Voorhees, and K. D. Cooper. Intralesional Tlymphocyte activation as a mediator of psoriatic epidermal hyperplasia. J. Invest. Dermatol. 105:89S-94S (1995).

    PubMed  Google Scholar 

  4. J. D. Bos, C. Hagernaars, P. K. Das, S. R. Krieg, W. J. Voorn, and M. L. Kapsenberg. Predominance of ''memory'' T cells (CD4C, CDw29C) over ''naive'' T cells (CD4C, CD45RC) in both normal and diseased human skin. Arch. Dermatol. Res. 281:24–30 (1989).

    PubMed  Google Scholar 

  5. M. Friedrich, S. Krammig, M. Henze, W. D. Döcke, W. Sterry, and K. Asadullah. Flow cytometric characterization of lesional T cells in psoriasis: intracellular cytokine and surface antigen expression indicates an activated, memory/effector type 1 immunophenotype. Arch. Dermatol. Res. 292:519–521 (2000).

    PubMed  Google Scholar 

  6. G. S. Morganroth, L. S. Chan, G. D. Weinstein, J. J. Voorhees, and K. D. Cooper. Proliferating cells in psoriatic dermis are comprised primarily of T cells, endothelial cells, and factor XIIIa+ perivascular dendritic cells. J. Invest. Dermatol. 96:333–340 (1991).

    PubMed  Google Scholar 

  7. C. P. Larsen, S. C. Ritchie, R. Hendrix, P. S. Linsley, K. S. Hathcock, R. J. Hodes, R. P. Lowry, and T. C. P earson. Regulation of immunostimulatory function and costimulatory molecule (B7–1 and B7–2) expression on murine dendritic cells. J. Immunol. 152:5208–5219 (1994).

    PubMed  Google Scholar 

  8. G. Wingren, E. Parra, M. Varga, T. Kalland, H. O. Sjogren, G. Hedlund, and M. Dohlsten. T cell activation pathways: B7, LFA-3, and ICAM-1 shape unique T cell profiles. Crit. Rev. Immunol. 15:235–253 (1995).

    PubMed  Google Scholar 

  9. P. Brottier, L. Broumsell, C. Gelin, and A. Bernard. T cell activation via CD2 [T, gp50] molecules: accessory cells are required to trigger T cell activation via CD2-D66 plus CD2–9.6/T111 epitopes. J. Immunol. 135:1624–1631 (1985).

    PubMed  Google Scholar 

  10. M. E. Sanders, M. W. Makgobak, S. O. Sharrow, D. Stephany, T. A. Springer, H. A. Young, and S. Shaw. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-γ production. J. Immunol. 140:1401–1407 (1988).

    PubMed  Google Scholar 

  11. S. Danielian, R. Fagard, A. Alcover, O. Acuto, and S. Fischer. The tyrosine kinase activity of p56lck is increased in human T cells activated via CD2. Eur. J. Immunol. 21:1967–1970 (1991).

    PubMed  Google Scholar 

  12. C. H. June, M. C. Fletcher, J. A. Ledbetter, and L. E. Samelson. Increases in tyrosine phosphorylation are detectable before phospholipase C activation after T cell receptor stimulation. J. Immunol. 144:1591–1599 (1990).

    PubMed  Google Scholar 

  13. P. L. Chisholm, C. A. Williams, W. E. Jones, G. R. Majeau, F. B. Oleson, B. Burrus-Fischer, W. Meier, and P. S. Hochman. The effects of an immunomodulatory LFA3-IgG1 fusion protein on nonhuman primates. Ther. Immunol. 1:205–216 (1994).

    PubMed  Google Scholar 

  14. W. Meier, A. Gill, M. Rogge, R. Dabora, G. R. Majeau, F. B. Oleson, W. E. Jones, D. Frazier, K. Miatkowski, and P. S. Hochman. Immunomodulation by LFA3TIP, an LFA-3_IgG1 fusion protein: cell line dependent glycosylation effects on pharmacokinetics and pharmacoynamic markers. Ther. Immunol. 2:159–171 (1995).

    PubMed  Google Scholar 

  15. G. T. Miller, P. S. Hochman, W. Meier, R. Tizard, S. A. Bixler, M. D. Rosa, and B. P. Wallner. Specific interaction of lymphocyte function-associated antigen 3 with CD2 can inhibit T cells responses. J. Exp. Med. 178:211–222 (1993).

    PubMed  Google Scholar 

  16. G. R. Majeau, W. Meier, B. Jimmo, D. Kioussis, and P. S. Hochman. Mechanism of lymphocyte function-associated molecule 3-Ig fusion proteins inhibition of T cell responses: structure/function analysis in vitro and in human CD2 transgenic mice. J. Immunol. 152:2753–2767 (1994).

    PubMed  Google Scholar 

  17. G. R. Majeau, A. Whitty, K. Yim, W. Meier, and P. S. Hochman. Low affinity binding of an LFA-3/IgG1 fusion protein to CD2+ T cells is independent of cell activation. Cell Adhes. Comm. 7:267–279 (1999).

    Google Scholar 

  18. C. N. Ellis and G. G. Krueger. Treatment of chronic plaque psoriasis by selective targeting of memory effector T lymphocytes. N. Engl. J. Med. 345:248–255 (2001).

    PubMed  Google Scholar 

  19. M. Rogge, C. Ellis, G. Krueger, M. Cooney, G. Winkler, D. Magilavy, and K. Sweeney. Pharmacokinetics of LFA3TIP (Amevive) in chronic plaque psoriasis patients during repeated once-weekly intravenous administration. J. Invest. Dermatol. 112:608 (1999) (abstr.).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashay K. Vaishnaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaishnaw, A.K., TenHoor, C.N. Pharmacokinetics, Biologic Activity, and Tolerability of Alefacept by Intravenous and Intramuscular Administration. J Pharmacokinet Pharmacodyn 29, 415–426 (2002). https://doi.org/10.1023/A:1022995602257

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022995602257

Navigation