Skip to main content
Log in

Matrix metalloproteinase inhibitors attenuate endotoxemia induced cardiac dysfunction: A potential role for MMP-9

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Enhanced cardiac generation of peroxynitrite contributes to septic cardiomyopathy. Since matrix metalloproteinases (MMPs) are activated in vitro by peroxynitrite, we hypothezised that MMPs may contribute to cardiac mechanical dysfunction in sepsis. Rats were injected (i.p.) with either lipopolysaccharide (LPS, 4mg/kg) or vehicle. MMP inhibitors, either Ro 31-9790 (20 mg/kg), doxycycline (4mg/kg), or vehicle were administered i.p. 30 min after LPS. At 6 h, when the symptoms of endotoxemia peak, hearts were excised and perfused as working hearts with Krebs-Henseleit buffer at 37°C. Cardiac work (cardiac output x peak systolic pressure product) was measured. Perfusate and ventricle samples were analyzed by gelatin zymography to quantify MMP activity.

Cardiac function was significantly depressed in LPS-treated rats compared to control rats (control: 55 ± 4, LPS: 26 ± 6 mmHg*mL*min−1). LPS also caused a loss of 72 kDa MMP-2 activity in the ventricles and the perfusate. Although MMP-9 activity was not detected in the ventricles, LPS resulted in an increase in perfusate 92 kDa MMP-9 activity. The MMP inhibitors significantly improved cardiac function of LPS-treated rats (Ro31-9790: 38 ± 3, doxycycline: 51 ± 3 mmHg*mL*min−1), had no effect on the loss of MMP-2 activity, and significantly reduced the MMP-9 activity in the perfusate. These results demonstrate, for the first time, that LPS induced cardiac dysfunction is associated with a loss in ventricular MMP-2 activity and the release of MMP-9 from the heart. MMP inhibitors can significantly preserve cardiac mechanical function during septic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20: 864-874, 1992

    Google Scholar 

  2. Grocott-Mason RM, Shah AM: Cardiac dysfunction in sepsis: New theories and clinical implications. Intensive Care Med 24: 286-295, 1998

    Google Scholar 

  3. Titheradge MA: Nitric oxide in septic shock. Biochim Biophys Acta 1411: 437-455, 1999

    Google Scholar 

  4. Beckman JS, Koppenol WH: Nitric oxide, superoxide, and peroxynitrite: The good the bad, and the ugly. Am J Physiol 271: C1424-C1437, 1996

    Google Scholar 

  5. Kooy NW, Lewis SJ, Royall JA, Ye YZ, Kelly DR, Beckman JS: Extensive tyrosine nitration in human myocardial inflammation: Evidence for the presence of peroxynitrite. Crit Care Med 25: 812-819, 1997

    Google Scholar 

  6. Kooy NW, Royall JA, Ye YZ, Kelly DR, Beckman JS: Evidence for in vivo peroxynitrite production in human acute lung injury. Am J Respir Crit Care Med 151: 1250-1254, 1995

    Google Scholar 

  7. Khadour FH, Panas DL, Ferdinandy P, Schulze CJ, Csont T, Lalu MM, Wildhirt SM, Schulz R: Enhanced NO and superoxide generation in dysfunctional hearts from endotoxemic rats. Am J Physiol 283: H1108-H1115, 2002

    Google Scholar 

  8. Kamisaki Y, Wada K, Ataka M, Yamada Y, Nakamoto K, Ashida K, Kishimoto Y: Lipopolysaccharide-induced increase in plasma nitrotyrosine concentrations in rats. Biochim Biophys Acta 1362: 24-28, 1997

    Google Scholar 

  9. Galis ZS, Khatri JJ: Matrix metalloproteinases in vascular remodeling and atherogenesis: The good, the bad, and the ugly. Circ Res 90: 251-262, 2002

    Google Scholar 

  10. Creemers EE, Cleutjens JP, Smits JF, Daemen MJ: Matrix metallo-proteinase inhibition after myocardial infarction: A new approach to prevent heart failure? Circ Res 89: 201-210, 2001

    Google Scholar 

  11. Cheung P-Y, Sawicki G, Wozniak M, Wang W, Radomski MW, Schulz R: Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation 101: 1833-1839, 2000

    Google Scholar 

  12. Wang W, Schulze CJ, Suarez-Pinzon WL, Dyck JR, Sawicki G, Schulz R: Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 106: 1543-1549, 2002

    Google Scholar 

  13. Fernandez-Patron C, Radomski MW, Davidge SM: Vascular matrix metalloproteinase-2 cleaves big endothelin-1 yielding a novel vasoconstrictor. Circ Res 85: 906-911, 1999

    Google Scholar 

  14. Fernandez-Patron C, Stewart KG, Zhang Y, Koivunen E, Radomski MW, Davidge ST: Vascular matrix metalloproteinase-2-dependent cleavage of calcitonin gene-related peptide promotes vasoconstriction. Circ Res 87: 670-676, 2000

    Google Scholar 

  15. Sawicki G, Salas E, Murat J, Miszta-Lane H, Radomski MW: Release of gelatinase A during platelet activation mediates aggregation. Nature 386: 616-619, 1997

    Google Scholar 

  16. Okamoto T, Akaike T, Sawa T, Miyamoto Y, van der Vliet A, Maeda H: Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J Biol Chem 276: 29596-29602, 2001

    Google Scholar 

  17. Schulz R, Nava E, Moncada S: Induction and potential biological relevance of Ca2+-independent nitric oxide synthase in the myocardium. Br J Pharmacol 105: 575-580, 1992

    Google Scholar 

  18. Ferdinandy P, Panas D, Schulz R: Peroxynitrite contributes to spontaneous loss of cardiac efficiency in isolated working rat hearts. Am J Physiol 276: H1861-H1867, 1999

    Google Scholar 

  19. Ferdinandy P, Daniel H, Ambrus I, Rothery R, Schulz R: Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 87: 241-247, 2000

    Google Scholar 

  20. Keliner DE, Stetler-Stevenson WG: Quantitative zymography: Detection of picogram quantities of gelatinases. Anal Biochem 218: 325-329, 1994

    Google Scholar 

  21. Yu AE, Murphy AN, Stetler-Stevenson WG: 72-kDa gelatinase (gelatinase A): Structure, activation, regulation, and substrate specificity. In: W. Parks, R. Mecham (eds). Matrix Metalloproteinases. Academic Press, San Diego, 1998, pp 85-114

    Google Scholar 

  22. Mostafa Mtairag E, Chollet-Martin S, Oudghiri M, Laquay N, Jacob MP, Michel JB, Feldman LJ: Effects of interleukin-10 on monocyte/endothelial cell adhesion and MMP-9/TIMP-1 secretion. Cardiovasc Res 49: 882-890, 2001

    Google Scholar 

  23. Peterson JT, Hallak H, Johnson L, Li H, O'Brien PM, Sliskovic DR, Bocan TM, Coker ML, Etoh T, Spinale FG: Matrix metalloproteinase inhibition attenuates left ventricular remodeling and dysfunction in a rat model of progressive heart failure. Circulation 103: 2303-2309, 2001

    Google Scholar 

  24. Spinale FG, Coker ML, Heung LJ, Bond BR, Gunasinghe HR, Etoh T, Goldberg AT, Zellner JL, Crumbley AJ: A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation 102: 1944-1949, 2000

    Google Scholar 

  25. Li YY, Feldman AM, Sun Y, McTiernan CF: Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 98: 1728-1734, 1998

    Google Scholar 

  26. Yasmin W, Strynadka KD, Schulz R: Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts. Cardiovasc Res 33: 422-432, 1997

    Google Scholar 

  27. Qun Gao C, Sawicki G, Suarez-Pinzon WL, Csont T, Wozniak M, Ferdinandy P, Schulz R: Matrix metalloproteinase-2 mediates cytokine-induced myocardial contractile dysfunction. Cardiovasc Res 57: 426-433, 2002

    Google Scholar 

  28. Huhtala P, Chow LT, Tryggvason K: Structure of the human type IV collagenase gene. J Biol Chem 265: 11077-11082, 1990

    Google Scholar 

  29. Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N: Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 268: 10425-10432, 1993

    Google Scholar 

  30. Wang W, Sawicki G, Schulz R: Peroxynitrite-induced myocardial injury is mediated through matrix metalloproteinase-2. Cardiovasc Res 53: 165-174, 2002

    Google Scholar 

  31. Nakamura T, Ebihara I, Shimada N, Shoji H, Koide H: Modulation of plasma metalloproteinase-9 concentrations and peripheral blood monocyte mRNA levels in patients with septic shock: Effect of fiber-immobilized polymyxin B treatment. Am J Med Sci 316: 355-360, 1998

    Google Scholar 

  32. Balduyck M, Albani D, Jourdain M, Mizon C, Tournoys A, Drobecq H, Fourrier F, Mizon J: Inflammation-induced systemic proteolysis of inter-alpha-inhibitor in plasma from patients with sepsis. J Lab Clin Med 135: 188-198, 2000

    Google Scholar 

  33. Smith GN Jr, Mickler EA, Hasty KA, Brandt KD: Specificity of inhibition of matrix metalloproteinase activity by doxycycline: Relationship to structure of the enzyme. Arthritis Rheum 42: 1140-1146, 1999

    Google Scholar 

  34. Yamamoto M, Tsujishita H, Hori N, Ohishi Y, Inoue S, Ikeda S, Okada Y: Inhibition of membrane-type 1 matrix metalloproteinase by hydroxamate inhibitors: An examination of the subsite pocket. J Med Chem 41: 1209-1217, 1998

    Google Scholar 

  35. Vieillard-Baron A, Frisdal E, Eddahibi S, Deprez I, Baker AH, Newby AC, Berger P, Levame M, Raffestin B, Adnot S, d'Ortho MP: Inhibition of matrix metalloproteinases by lung TIMP-1 gene transfer or doxycycline aggravates pulmonary hypertension in rats. Circ Res 87: 418-425, 2000

    Google Scholar 

  36. Tronc F, Mallat Z, Lehoux S, Wassef M, Esposito B, Tedgui A: Role of matrix metalloproteinases in blood flow-induced arterial enlargement: Interaction with NO. Arterioscler Thromb Vasc Biol 20: E120-E126, 2000

    Google Scholar 

  37. Hewson AK, Smith T, Leonard JP, Cuzner ML: Suppression of experimental allergic encephalomyelitis in the Lewis rat by the matrix metalloproteinase inhibitor Ro31-9790. Inflamm Res 44: 345-349, 1995

    Google Scholar 

  38. Siebert H, Dippel N, Mader M, Weber F, Bruck W: Matrix metalloproteinase expression and inhibition after sciatic nerve axotomy. J Neuropathol Exp Neurol 60: 85-93, 2001

    Google Scholar 

  39. Rohde LE, Ducharme A, Arroyo LH, Aikawa M, Sukhova GH, Lopez-Anaya A, McClure KE, Mitchell PG, Libby P, Lee RT: Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation 99: 3063-3070, 1999

    Google Scholar 

  40. Lindsey ML, Gannon J, Aikawa M, Schoen FJ, Rabkin E, Lopresti-Morrow L, Crawford J, Black S, Libby P, Mitchell PG, Lee RT: Selective matrix metalloproteinase inhibition reduces left ventricular remodeling but does not inhibit angiogenesis after myocardial infarction. Circulation 105: 753-758, 2002

    Google Scholar 

  41. Weber KT, Sun Y, Tyagi SC, Cleutjens JP: Collagen network of the myocardium: Function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol 26: 279-292, 1994

    Google Scholar 

  42. Rouet-Benzineb P, Buhler JM, Dreyfus P, Delcourt A, Dorent R, Perennec J, Crozatier B, Harf A, Lafuma C: Altered balance between matrix gelatinases (MMP-2 and MMP-9) and their tissue inhibitors in human dilated cardiomyopathy: Potential role of MMP-9 in myosinheavy chain degradation. Eur J Heart Fail 1: 337-352, 1999

    Google Scholar 

  43. Ammann P, Fehr T, Minder EI, Gunter C, Bertel O: Elevation of troponin I in sepsis and septic shock. Intensive Care Med 27: 965-969, 2001

    Google Scholar 

  44. Turner A, Tsamitros M, Bellomo R: Myocardial cell injury in septic shock. Crit Care Med 27: 1775-1780, 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalu, M.M., Gao, C.Q. & Schulz, R. Matrix metalloproteinase inhibitors attenuate endotoxemia induced cardiac dysfunction: A potential role for MMP-9. Mol Cell Biochem 251, 61–66 (2003). https://doi.org/10.1023/A:1025417529167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025417529167

Navigation