Skip to main content
Log in

Motor Enrichment and the Induction of Plasticity Before or After Brain Injury

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Voluntary exercise, treadmill activity, skills training, and forced limb use have been utilized in animal studies to promote brain plasticity and functional change. Motor enrichment may prime the brain to respond more adaptively to injury, in part by upregulating trophic factors such as GDNF, FGF-2, or BDNF. Discontinuation of exercise in advance of brain injury may cause levels of trophic factor expression to plummet below baseline, which may leave the brain more vulnerable to degeneration. Underfeeding and motor enrichment induce remarkably similar molecular and cellular changes that could underlie their beneficial effects in the aged or injured brain. Exercise begun before focal ischemic injury increases BDNF and other defenses against cell death and can maintain or expand motor representations defined by cortical microstimulation. Interfering with BDNF synthesis causes the motor representations to recede or disappear. Injury to the brain, even in sedentary rats, causes a small, gradual increase in astrocytic expression of neurotrophic factors in both local and remote brain regions. The neurotrophic factors may inoculate those areas against further damage and enable brain repair and use-dependent synaptogenesis associated with recovery of function or compensatory motor learning. Plasticity mechanisms are particularly active during time-windows early after focal cortical damage or exposure to dopamine neurotoxins. Motor and cognitive impairments may contribute to self-imposed behavioral impoverishment, leading to a reduced plasticity. For slow degenerative models, early forced forelimb use or exercise has been shown to halt cell loss, whereas delayed rehabilitation training is ineffective and disuse is prodegenerative. However, it is possible that, in the chronic stages after brain injury, a regimen of exercise would reactivate mechanisms of plasticity and thus enhance rehabilitation targeting residual functional deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Cotman, C. W. and Berchtold, N. C. 2002. Exercise: A behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25:295-301.

    PubMed  Google Scholar 

  2. Gomez-Pinilla, F., Dao, L., and So, V. 1997. Physical exercise induces FGF-2 and its mRNA in the hippocampus. Brain Res. 764:1-8.

    PubMed  Google Scholar 

  3. Neeper, S. A., Gomez-Pinilla, F., Choi, J., and Cotman, C. W. 1995. Exercise and brain neurotrophins. Nature 373:109.

    PubMed  Google Scholar 

  4. Neeper, S. A., Gomez-Pinilla, F., Choi, J., and Cotman, C. W. 1996. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 726:49-56.

    PubMed  Google Scholar 

  5. van Praag, H., Christie, B. R., Sejnowski, T. J., and Gage, F. H. 1999. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. USA 96: 13427-13431.

    PubMed  Google Scholar 

  6. van Praag, H., Kempermann, G., and Gage, F. H. 1999. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 2:266-270.

    PubMed  Google Scholar 

  7. Jones, T. A., Bury, S. D., Adkins, D. L., Luke, L. M., and Sakata, J. T. 2003. Importance of behavioral manipulations and measures in rat models of brain damage and brain repair. ILAR J 44:144-152.

    PubMed  Google Scholar 

  8. Gilliam, P. E., Spirduso, W. W., Martin, T. P., Walters, T. J., Wilcox, R. E., and Farrar, R. P. 1984. The effects of exercise training on [3H]-spiperone binding in rat striatum. Pharmacol. Biochem. Behav. 20:863-867.

    PubMed  Google Scholar 

  9. MacRae, P. G., Spirduso, W. W., Cartee, G. D., Farrar, R. P., and Wilcox, R. E. 1987. Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolite levels. Neurosci. Lett. 79:138-144.

    PubMed  Google Scholar 

  10. Greenwood, B. N., Foley, T. E., Day, H. E., Campisi, J., Hammack, S. H., Campeau, S., Maier, S. F., and Fleshner, M. 2003. Freewheel running prevents learned helplessness/behavioral depression: Role of dorsal raphe serotonergic neurons. J. Neurosci. 23:2889-2898.

    PubMed  Google Scholar 

  11. Kleim, J. A., Cooper, N. R., and VandenBerg, P. M. 2002. Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Res. 934:1-6.

    PubMed  Google Scholar 

  12. Isaacs, K. R., Anderson, B. J., Alcantara, A. A., Black, J. E., and Greenough, W. T. 1992. Exercise and the brain: Angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J. Cereb. Blood Flow Metab. 12:110-119.

    PubMed  Google Scholar 

  13. Churchill, J. D., Galvez, R., Colcombe, S., Swain, R. A., Kramer, A. F., and Greenough, W. T. 2002. Exercise, experience and the aging brain. Neurobiol. Aging 23:941-955.

    PubMed  Google Scholar 

  14. Swain, R. A., Harris, A. B., Wiener, E. C., Dutka, M. V., Morris, H. D., Theien, B. E., Konda, S., Engberg, K., Lauterbur, P. C., and Greenough, W. T. 2003. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 117:1037-1046.

    PubMed  Google Scholar 

  15. Anderson, B. J., Eckburg, P. B., and Relucio, K. I. 2002. Alterations in the thickness of motor cortical subregions after motor-skill learning and exercise. Learn. Mem. 9:1-9.

    PubMed  Google Scholar 

  16. Spirduso, W. W., MacRae, H. H., MacRae, P. G., Prewitt, J., and Osborne, L. 1988. Exercise effects on aged motor function. Ann. N Y Acad. Sci. 515:363-375.

    PubMed  Google Scholar 

  17. Pagliari, R. and Peyrin, L. 1995. Norepinephrine release in the rat frontal cortex under treadmill exercise: A study with microdialysis. J. Appl. Physiol. 78:2121-2130.

    PubMed  Google Scholar 

  18. Dey, S., Singh, R. H., and Dey, P. K. 1992. Exercise training: Significance of regional alterations in serotonin metabolism of rat brain in relation to antidepressant effect of exercise. Physiol. Behav. 52:1095-1099.

    PubMed  Google Scholar 

  19. Gomez-Merino, D., Bequet, F., Berthelot, M., Chennaoui, M., and Guezennec, C. Y. 2001. Site-dependent effects of an acute intensive exercise on extracellular 5-HT and 5-HIAA levels in rat brain. Neurosci. Lett. 301:143-146.

    PubMed  Google Scholar 

  20. Oliff, H. S., Berchtold, N. C., Isackson, P., and Cotman, C. W. 1998. Exercise-induced regulation of brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Brain Res. Mol. Brain Res. 61:147-153.

    PubMed  Google Scholar 

  21. Shen, H., Tong, L., Balazs, R., and Cotman, C. W. 2001. Physical activity elicits sustained activation of the cyclic AMP response element-binding protein and mitogen-activated protein kinase in the rat hippocampus. Neuroscience 107:219-229.

    PubMed  Google Scholar 

  22. Tong, L., Shen, H., Perreau, V. M., Balazs, R., and Cotman, C. W. 2001. Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiol. Dis. 8:1046-1056.

    PubMed  Google Scholar 

  23. Vanderwolf, C. H. 1969. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr. Clin. Neurophysiol. 26:407-418.

    PubMed  Google Scholar 

  24. Chaouloff, F. 1989. Physical exercise and brain monoamines: A review. Acta Physiol. Scand. 137:1-13.

    PubMed  Google Scholar 

  25. Whishaw, I. Q. and Schallert, T. 1977. Hippocampal RSA (theta), apnea, bradycardia and effects of atropine during underwater swimming in the rat. Electroencephalogr. Clin. Neurophysiol. 42:389-396.

    PubMed  Google Scholar 

  26. Takahashi, H., Takada, Y., Nagai, N., Urano, T., and Takada, A. 2000. Serotonergic neurons projecting to hippocampus activate locomotion. Brain. Res. 869:194-202.

    PubMed  Google Scholar 

  27. Moraska, A. and Fleshner, M. 2001. Voluntary physical activity prevents stress-induced behavioral depression and anti-KLH antibody suppression. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281:R484-R489.

    PubMed  Google Scholar 

  28. Kempermann, G., Kuhn, H. G., and Gage, F. H. 1997. More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493-495.

    PubMed  Google Scholar 

  29. Dunn, A. L., Reigle, T. G., Youngstedt, S. D., Armstrong, R. B., and Dishman, R. K. 1996. Brain norepinephrine and metabolites after treadmill training and wheel running in rats. Med. Sci. Sports Exerc. 28:204-209.

    PubMed  Google Scholar 

  30. Anderson, K. J., Dam, D., Lee, S., and Cotman, C. W. 1988. Basic fibroblast growth factor prevents death of lesioned cholinergic neurons in vivo. Nature 332:360-361.

    PubMed  Google Scholar 

  31. Cotman, C. W. and Engesser-Cesar, C. 2002. Exercise enhances and protects brain function. Exerc. Sport Sci. Rev. 30:75-79.

    PubMed  Google Scholar 

  32. MacRae, P. G., Spirduso, W. W., Walters, T. J., Farrar, R. P., and Wilcox, R. E. 1987. Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolites in presenescent older rats. Psychopharmacology (Berl.) 92:236-40.

    Google Scholar 

  33. Fordyce, D. E., Starnes, J. W., and Farrar, R. P. 1991. Compensation of the age-related decline in hippocampal muscarinic receptor density through daily exercise or underfeeding. J. Gerontol. 46:B245-B248.

    PubMed  Google Scholar 

  34. Campisi, J., Leem, T. H., Greenwood, B. N., Hansen, M. K., Moraska, A., Higgins, K., Smith, T. P., and Fleshner, M. 2003. Habitual physical activity facilitates stress-induced HSP72 induction in brain, peripheral, and immune tissues. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284:R520-R530.

    PubMed  Google Scholar 

  35. Mattson, M. P., Culmsee, C., Slevin, J. R., and Liu, D. 2002. Synaptic apoptosis and neuroprotective strategies. Pages 419-430, in Krieglstein, J. and Klumpp, S. (eds.), Pharmacology of Cerebral Ischemia, Stuttgart, Medpharm Scientific.

    Google Scholar 

  36. Mattson, M. P. and Scheff, S. W. 1994. Endogenous neuroprotection factors and traumatic brain injury: Mechanisms of action and implications for therapy. J. Neurotrauma 11:3-33.

    PubMed  Google Scholar 

  37. Trejo, J. L., Carro, E., and Torres-Aleman, I. 2001. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 21:1628-1634.

    PubMed  Google Scholar 

  38. Chevion, S., Moran, D. S., Heled, Y., Shani, Y., Regev, G., Abbou, B., Berenshtein, E., Stadtman, E. R., and Epstein, Y. 2003. Plasma antioxidant status and cell injury after severe physical exercise. Proc. Natl. Acad. Sci. USA 100:5119-23.

    PubMed  Google Scholar 

  39. Sharp, F. R., Kinouchi, H., Massa, S. M., Weinstein, P., Narasimhan, P., Sklar, R., and Chan, P. 1998. Stress gene induction in focal ischemia. Pages, in Ginsberg, M. D. and Bogousslavsky, J. (eds.), Cerebrovascular Disease: Pathophysiology, Diagnosis, and Management, Malden, MA, Blackwell Science.

    Google Scholar 

  40. Wu, J., Hua, Y., Keep, R. F., Schallert, T., Hoff, J. T., and Xi, G. (2002). Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage. Brain Res. 953:45-52.

    PubMed  Google Scholar 

  41. Chen, J., Graham, S. H., Zhu, R. L., and Simon, R. P. 1996. Stress proteins and tolerance to focal cerebral ischemia. J. Cereb. Blood Flow Metab. 16:566-577.

    PubMed  Google Scholar 

  42. Lo, E. H., Dalkara, T., and Moskowitz, M. A. 2003. Neurological diseases: Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci. 4:399-414.

    PubMed  Google Scholar 

  43. Wang, R. Y., Yang, Y. R., and Yu, S. M. 2001. Protective effects of treadmill training on infarction in rats. Brain Res. 922: 140-143.

    PubMed  Google Scholar 

  44. Stummer, W., Weber, K., Tranmer, B., Baethmann, A., and Kemski, O. 1994. Reduced mortality and brain damage after locomotor activity in gerbil forebrain ischemia. Stroke 25:1862-1869.

    PubMed  Google Scholar 

  45. Weissner, C., Kartje, G., Hillenbrand, R., Mir, A. K., and Schwab, M. E. 2002. Anti-Nogo-A antibody therapy after experimental stroke. Pages 343-353, in Krieglstein, J. and Klumpp, S. (eds.), Pharmacology of Cerebral Ischemia, Stuttgart, Medpharm Scientific.

    Google Scholar 

  46. Young, D., Lawlor, P. A., Leone, P., Dragunow, M., and During, M. J. 1999. Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nat. Med. 5: 448-453.

    PubMed  Google Scholar 

  47. Bury, S. D., Adkins, D. L., Ishida, J. T., Kotzer, C. M., Eichhorn, A. C., and Jones, T. A. 2000. Denervation facilitates neuronal growth in the motor cortex of rats in the presence of behavioral demand. Neurosci. Lett. 287:85-88.

    PubMed  Google Scholar 

  48. Bury, S. D., Eichhorn, A. C., Kotzer, C. M., and Jones, T. A. 2000. Reactive astrocytic responses to denervation in the motor cortex of adult rats are sensitive to manipulations of behavioral experience. Neuropharmacology 39:743-755.

    PubMed  Google Scholar 

  49. Jones, T. A., Chu, C. J., Grande, L. A., and Gregory, A. D. 1999. Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J. Neurosci. 19:10153-10163.

    PubMed  Google Scholar 

  50. Schallert, T., Leasure, J. L., and Kolb, B. 2000. Experience-associated structural events, subependymal cellular proliferative activity, and functional recovery after injury to the central nervous system. J. Cereb. Blood Flow Metab. 20:1513-1528.

    PubMed  Google Scholar 

  51. Jones, T. A. and Schallert, T. 1994. Use-dependent growth of pyramidal neurons after neocortical damage. J. Neurosci. 14: 2140-2152.

    PubMed  Google Scholar 

  52. Tillerson, J. L., Cohen, A. D., Caudle, W. M., Zigmond, M. J., Schallert, T., and Miller, G. W. 2002. Forced nonuse in unilateral parkinsonian rats exacerbates injury. J. Neurosci. 22: 6790-6799.

    PubMed  Google Scholar 

  53. Tillerson, J. L., Cohen, A. D., Philhower, J., Miller, G. W., Zigmond, M. J., and Schallert, T. 2001. Forced limb-use effects on the behavioral and neurochemical effects of 6-hydroxydopamine. J. Neurosci. 21:4427-4435.

    PubMed  Google Scholar 

  54. Keyvani, K. and Schallert, T. 2002. Plasticity associated molecular and structural events in postlesional brain. J. Neuropathol. Exp. Neurol. 61:831-840.

    PubMed  Google Scholar 

  55. Kawamata, T., Dietrich, W. D., Schallert, T., Gotts, J. E., Cocke, R. R., Benowitz, L. I., and Finklestein, S. P. 1997. Intracisternal basic fibroblast growth factor enhances functional recovery and up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction. Proc. Natl. Acad. Sci. USA 94:8179-8184.

    PubMed  Google Scholar 

  56. Benefiel, A. C. and Greenough, W. T. 1998. Effects of experience and environment on the developing and mature brain: Implications for laboratory animal housing. ILAR J 39:5-11.

    PubMed  Google Scholar 

  57. Schallert, T., Woodlee, M. T., and Fleming, S. M. 2003. Experimental focal ischemic injury: Behavior-brain interactions and issues of animal handling and housing. ILAR J 44:130-143.

    PubMed  Google Scholar 

  58. Nudo, R. J., Wise, B. M., SiFuentes, F. and Milliken, G. W. 1996. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272:1791-1794.

    PubMed  Google Scholar 

  59. Nudo, R. J., Plautz, E. J., and Frost, S. B. 2001. Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve 24:1000-1019.

    PubMed  Google Scholar 

  60. Chu, C. J. and Jones, T. A. 2000. Experience-dependent structural plasticity in cortex heterotopic to focal sensorimotor cortical damage. Exp. Neurol. 166:403-144.

    Google Scholar 

  61. Biernaskie, J. and Corbett, D. 2001. Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J. Neurosci. 21: 5272-5280.

    PubMed  Google Scholar 

  62. Johansson, B. B. 2000. Brain plasticity and stroke rehabilitation: The Willis lecture. Stroke 31:223-230.

    PubMed  Google Scholar 

  63. Cohen, A. D., Tillerson, J. L., Smith, A. D., Schallert, T., and Zigmond, M. J. 2003. Neuroprotective effects of prior limb use in 6-hydroxydopamine-treated rats: Possible role of GDNF. J. Neurochem. 85:299-305.

    PubMed  Google Scholar 

  64. Tillerson, J. L., Caudle, W. M., Reveron, M. E., and Miller, G. W. 2003. Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson's disease. Neuroscience 119:899-911.

    PubMed  Google Scholar 

  65. Klintsova, A. Y., Goodlett, C. R., and Greenough, W. T. 2000. Therapeutic motor training ameliorates cerebellar effects of postnatal binge alcohol. Neurotoxicol. Teratol. 22:125-132.

    PubMed  Google Scholar 

  66. Klintsova, A. Y., Scamra, C., Hoffman, M., Napper, R. M., Goodlett, C. R., and Greenough, W. T. 2002. Therapeutic effects of complex motor training on motor performance deficits induced by neonatal binge-like alcohol exposure in rats: II. A quantitative stereological study of synaptic plasticity in female rat cerebellum. Brain Res. 937:83-93.

    PubMed  Google Scholar 

  67. Johansson, B. B. and Belichenko, P. V. 2002. Neuronal plasticity and dendritic spines: Effect of environmental enrichment on intact and postischemic rat brain. J. Cereb. Blood Flow Metab. 22:89-96.

    PubMed  Google Scholar 

  68. Kolb, B. 1995. Brain plasticity and behavior. Mahwah, NJ, Lawrence Erlbaum Associates.

    Google Scholar 

  69. Dobrossy, M. D. and Dunnett, S. B. 2001. The influence of environment and experience on neural grafts. Nat. Rev. Neurosci. 2:871-879.

    PubMed  Google Scholar 

  70. Mayer, E., Brown, V. J., Dunnett, S. B., and Robbins, T. W. 1992. Striatal graft-associated recovery of a lesion-induced performance deficit in the rat requires learning to use the transplant. Eur. J. Neurosci. 4:119-126.

    PubMed  Google Scholar 

  71. Mattsson, B., Sorensen, J. C., Zimmer, J., and Johansson, B. B. 1997. Neural grafting to experimental neocortical infarcts improves behavioral outcomes and reduces thalamic atrophy in rats housed in enriched by not in standard environments. Stroke 28:1225-1231.

    PubMed  Google Scholar 

  72. Carro, E., Nunez, A., Busiguina, S., and Torres-Aleman, I. 2000. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J. Neurosci. 20:2926-2933.

    PubMed  Google Scholar 

  73. Ehninger, D. and Kemperman, G. 2003. Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex. Cereb. Cortex. 13:845-851.

    PubMed  Google Scholar 

  74. Moroz, I., Cohen, A. D., Tillerson, J. L., Maxwell, K., Martinez, E., Schallert, T., and Stewart, J. 2002. Effects of forced limb use on behavioral outcome and FGF-2-IR after partial unilateral 6-OHDA lesions of nigrostriatal dopamine neurons. Soc. Neurosci. Abstr. Program 8855.

  75. Schallert, T. and Whishaw, I. Q. 1978. Two types of aphagia and two types of sensorimotor impairment after lateral hypothalamic lesions: Observations in normal weight, dieted, and fattened rats. J. Comp. Physiol. Psychol. (now Behav. Neurosci.) 92:720-741.

    Google Scholar 

  76. Sherrington, C. S. 1900. The spinal cord in Schafer, E. A. (ed.), Textbook of Physiology, Edinburgh, Pentland.

  77. Schallert, T. 1989. Preoperative intermittent feeding or drinking regimens enhance postlesion sensorimotor function. Pages 1-20, in Schulkin, J. (ed.), Preoperative Events: Their Effects on Behavior Following Brain Damage, Hillsdale, NJ. Lawrence Erlbaum Associates.

    Google Scholar 

  78. Bruce-Keller, A. J., Umberger, G., McFall, R., and Mattson, M. P. 1999. Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann. Neurol. 45:8-15.

    PubMed  Google Scholar 

  79. Kolb, B., Whishaw, I. Q., and Schallert, T. 1977. Aphagia, behavior sequencing and body weight set point following orbital frontal lesions in rats. Physiol. Behav. 19:93-103.

    PubMed  Google Scholar 

  80. Spina, M. B., Squinto, S. P., Miller, J., Lindsay, R. M., and Hyman, C. 1992. Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: Involvement of the glutathione system. J. Neurochem. 59:99-106.

    PubMed  Google Scholar 

  81. Hamm, R. J., Temple, M. D., Buck, D. L., Deford, S. M., and Floyd, C. L. 2000. Cognitive recovery from traumatic brain injury: Results of posttraumatic experimental interventions. Pages 49-67, in Levin, H. and Grafman, J. (eds.), Cerebral Reorganization of Function After Brain Damage, New York, Oxford University Press.

    Google Scholar 

  82. Schallert, T. 1982. Adipsia produced by lateral hpothalamic lesions: Facilitation of recovery by preoperative restriction of water intake. J. Comp. Physiol. Psychol. (now Behav. Neurosci.) 96:604-614.

    Google Scholar 

  83. Molteni, R., Barnard, R. J., Ying, Z., Roberts, C. K., and Gomez-Pinilla, F. 2002. A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 112:803-814.

    PubMed  Google Scholar 

  84. Wu, A., Molteni, R., Ying, Z., and Gomez-Pinilla, F. 2003. A saturated fat diet aggravates the outcome of traumatic brain injury on hippocampal plasticity and cognitive function by reducing BDNF. Neuroscience 119:365-375.

    PubMed  Google Scholar 

  85. Ginsberg, M. D. and Busto, R. 1998. Combating hyperthermia in acute stroke: A significant clinical concern. Stroke 29:529-534.

    PubMed  Google Scholar 

  86. Colbourne, F., Li, H., and Buchan, A. M. 1999. Indefatigable CA1 sector neuroprotection with mild hypothermia induced 6 hours after severe forebrain ischemia in rats. J. Cereb. Blood Flow Metab. 19:742-749.

    PubMed  Google Scholar 

  87. Colbourne, F., Corbett, D., Zhao, Z., Yang, J., and Buchan, A. M. 2000. Prolonged but delayed postischemic hypothermia: A long-term outcome study in the rat middle cerebral artery occlusion model. J. Cereb. Blood Flow Metab. 20:1702-1708.

    PubMed  Google Scholar 

  88. Corbett, D., Hamilton, M., and Colbourne, F. 2000. Persistent neuroprotection with prolonged postischemic hypothermia in adult rats subjected to transient middle cerebral artery occlusion. Exp. Neurol. 163:200-206.

    PubMed  Google Scholar 

  89. Corbett, D. and Nurse, S. 1998. The problem of assessing effective neuroprotection in experimental cerebral ischemia. Prog. Neurobiol. 54:531-548.

    PubMed  Google Scholar 

  90. Dietrich, W. D., Busto, R., Alonso, O., Globus, M. Y., and Ginsberg, M. D. 1993. Intraischemic but not postischemic brain hypothermia protects chronically following global forebrain ischemia in rats. J. Cereb. Blood Flow Metab. 13:541-549.

    PubMed  Google Scholar 

  91. Horiguchi, T., Shimizu, K., Ogino, M., Suga, S., Inamasu, J., and Kawase, T. 2003. Postischemic hypothermia inhibits the generation of hydroxyl radical following transient forebrain ischemia in rats. J. Neurotrauma 20:511-520.

    PubMed  Google Scholar 

  92. Kil, H. Y., Zhang, J., and Piantadosi, C. A. 1996. Brain temperature alters hydroxyl radical production during cerebral ischemia/reperfusion in rats. J. Cereb. Blood Flow Metab. 6:100-106.

    Google Scholar 

  93. Schallert, T., Fleming, S. M., and Woodlee, M. T. 2003. Should the injured and intact hemispheres be treated differently during the early phases of physical restorative therapy in experimental stroke or parkinsonism? Phys. Med. Rehabil. Clin. 14:1-20.

    Google Scholar 

  94. Gomez-Pinilla, F., Lee, J. W., and Cotman, C. W. 1992. Basic FGF in adult rat brain: Cellular distribution and response to entorhinal lesion and fimbria-fornix transection. J. Neurosci. 12:345-355.

    PubMed  Google Scholar 

  95. Szele, F. G., Alexander, C., and Chesselet, M. F. 1995. Expression of molecules associated with neuronal plasticity in the striatum after aspiration and thermocoagulatory lesions of the cerebral cortex in adult rats. J. Neurosci. 15:4429-4448.

    PubMed  Google Scholar 

  96. Frim, D. M., Uhler, T. A., Short, M. P., Ezzedine, Z. D., Klagsbrun, M., Breakefield, X. O., and Isacson, O. 1993. Effects of biologically delivered NGF, BDNF and bFGF on striatal excitotoxic lesions. Neuroreport 4:367-370.

    PubMed  Google Scholar 

  97. Schallert, T., Bland, S., Humm, J. L., Tillerson, J. L., Gonzales, R. A., Aronowski, J., and Grotta, J. 1999. Behavioral demand effects on recovery of function and neuroplasticity. pages 145-167, in Grafman, J. and Levin, H. (eds.), Cerebral Reorganization of Function after brain injury, New York, Oxford University Press.

    Google Scholar 

  98. Schallert, T., Humm, J. L., Bland, S. T., Jones, T. A., Kolb, B., Aronowski, J., and Grotta, J. C. 2002. Activity-associated growth factor expression and related neuronal events in recovery of function after brain injury. pages 401-426, in Choi, D. W., Dacey, R. G., Hsu, C. Y., and Powers, W. J. (eds.), Cerebrovascular Disease: Momentum at the End of the Second Millenium, Armonk, NY, Futura.

    Google Scholar 

  99. Speliotes, E. K., Caday, C. G., Do, T., Weise, J., Kowall, N. W., and Finklestein, S. P. 1996. Increased expression of basic fibroblast growth factor (bFGF) following focal cerebral infarction in the rat. Brain Res. Mol. Brain Res. 39:31-42.

    PubMed  Google Scholar 

  100. Bury, S. D. and Jones, T. A. 2002. Unilateral sensorimotor cortex lesions in adult rats facilitate motor skill learning with the “unaffected” forelimb and training-induced dendritic structural plasticity in the motor cortex. J. Neurosci. 22:8597-8606.

    PubMed  Google Scholar 

  101. Kleim, J. A., Barbay, S., Cooper, N. R., Hogg, T. M., Reidel, C. N., Remple, M. S., and Nudo, R. J. 2002. Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiol. Learn. Mem. 77:63-77.

    PubMed  Google Scholar 

  102. Kleim, J. A., Barbay, S., and Nudo, R. J. 1998. Functional reorganization of the rat motor cortex following motor skill learning. J. Neurophysiol. 80:3321-3325.

    PubMed  Google Scholar 

  103. Friel, K. M., Heddings, A. A., and Nudo, R. J. 2000. Effects of postlesion experience on behavioral recovery and neurophysiologic reorganization after cortical injury in primates. Neurorehabil. Neural Repair. 14:187-198.

    PubMed  Google Scholar 

  104. Nudo, R. J., Larson, D., Plautz, E. J., Friel, K. M., Barbay, S., and Frost, S. B. 2003. A squirrel monkey model of poststroke motor recovery. ILAR J 44:161-174.

    PubMed  Google Scholar 

  105. VandenBerg, P. M. and Kleim, J. A. 2001. Ontogeny of postischemic cortical diaschisis. Soc. Neurosci. Abstr. 25, vol. 496.

    Google Scholar 

  106. Goertzen, C., Yamagishi, K., VandenBerg, P. M., and Kleim, J. A. 2001. Neural and behavioral compensation following ischemic infarct is dependent on the nature of motor rehabilitation experience. Soc. Neurosci. Abstr. 25, vol. 496.

    Google Scholar 

  107. Carro, E., Trejo, J. L., Busiguina, S., and Torres-Aleman, I. 2001. Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J. Neurosci. 21:5678-5684.

    PubMed  Google Scholar 

  108. Black, P., Markowitz, R. S., and Cianci, S. N. 1975. Recovery of motor function after lesions in motor cortex in monkeys. Symposium on the Outcome of Severe Damage to the Central Nervous System (1974: London, England). Pages 65-70, in Outcome of Severe Damage to the Central Nervous System, New York, Elsevier.

    Google Scholar 

  109. Freund, H. J. 1996. Remapping the brain. Science 272:1754.

    Google Scholar 

  110. Greenough, W. T., Fass, B., and DeVoogd, T. 1976. The influence of experience on recovery following brain damage in rodents: Hypotheses based on developmental research. Pages 10-50, in Walsh, R. N. and Greenough, W. T. (eds.), Environments as Therapy for Brain Dysfunction, New York, Plenum Press.

    Google Scholar 

  111. Johansson, B. B. 1995. Functional recovery after brain infarction. Cerebrovasc. Disord. 5:268-271.

    Google Scholar 

  112. Kaas, J. H. 1991. Plasticity of sensory and motor maps in adult mammals. Annu. Rev. Neurosci. 14:137-167.

    PubMed  Google Scholar 

  113. Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., and Ungerleider, L. G. 1995. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377:155-158.

    PubMed  Google Scholar 

  114. Pons, T. P., Garraghty, P. E., Ommaya, A. K., Kaas, J. H., Taub, E., and Mishkin, M. 1991. Massive cortical reorganization after sensory deafferentation in adult macaques. Science 252: 1857-1860.

    PubMed  Google Scholar 

  115. Rosenzweig, M. R. 1980. Animal models for effects of brain lesions and for rehabilitation. In Bach-y-Rita, P. (ed.), Recovery of Function: Theoretical Considerations for Brain Injury Rehabilitation, Bern, Switzerland: Hans Huber, pp. 127-172.

    Google Scholar 

  116. Sanes, J. N., Suner, S., Lando, J. F., and Donoghue, J. P. 1988. Rapid reorganization of adult rat motor cortex somatic representation patterns after motor nerve injury. Proc. Natl. Acad. Sci. USA 85:2003-2007.

    PubMed  Google Scholar 

  117. Schallert, T., Kozlowski, D. A., Humm, J. L., and Cocke, R. R. 1997. Use-dependent structural events in recovery of function. Adv. Neurol. 73:229-238.

    PubMed  Google Scholar 

  118. Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara, A. A., and Greenough, W. T. 1990. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc. Natl. Acad. Sci. USA 87:5568-72.

    PubMed  Google Scholar 

  119. Kleim, J. A., Lussnig, E., Schwarz, E. R., Comery, T. A., and Greenough, W. T. 1996. Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning. J. Neurosci. 16:4529-4535.

    PubMed  Google Scholar 

  120. Kleim, J. A., Vij, K., Ballard, D. H., and Greenough, W. T. 1997. Learning-dependent synaptic modifications in the cerebellar cortex of the adult rat persist for at least four weeks. J. Neurosci. 17:717-721.

    PubMed  Google Scholar 

  121. Kleim, J. A., Swain, R. A., Czerlanis, C. M., Kelly, J. L., Pipitone, M. A., and Greenough, W. T. 1997. Learning-dependent dendritic hypertrophy of cerebellar stellate cells: Plasticity of local circuit neurons. Neurobiol. Learn. Mem. 67:29-33.

    PubMed  Google Scholar 

  122. Kleim, J. A., Swain, R. A., Armstrong, K. A., Napper, R. M., Jones, T. A., and Greenough, W. T. 1998. Selective synaptic plasticity within the cerebellar cortex following complex motor skill learning. Neurobiol. Learn. Mem. 69:274-289.

    PubMed  Google Scholar 

  123. Withers, G. S. and Greenough, W. T. 1989. Reach training selectively alters dendritic branching in subpopulations of layer II–III pyramids in rat motor-somatosensory forelimb cortex. Neuropsychologia 27:61-69.

    PubMed  Google Scholar 

  124. Kozlowski, D. A., James, D. C., and Schallert, T. 1996. Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesions. J. Neurosci. 16:4776-4786.

    PubMed  Google Scholar 

  125. Schallert, T. and Jones, T. A. 1993. “Exuberant” neuronal growth after brain damage in adult rats: The essential role of behavioral experience. J. Neural Transplant Plast. 4:193-198.

    PubMed  Google Scholar 

  126. Chen, J., Li, Y., Wang, L., Zhang, Z., Lu, D., Lu, M., and Chopp, M. 2001. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32:1005-1011.

    PubMed  Google Scholar 

  127. Widenfalk, J., Olson, L., and Thoren, P. 1999. Deprived of habitual running, rats downregulate BDNF and TrkB messages in the brain. Neurosci. Res. 34:125-132.

    PubMed  Google Scholar 

  128. Parent, J. M., Vexler, Z. S., Gong, C., Derugin, N., and Ferriero, D. M. 2002. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann. Neurol. (online) Accessed Oct. 11, 2002, 52:802-813; www.interscience.wiley.com/jpages/0364-5134.

    PubMed  Google Scholar 

  129. Szele, F. G. and Chesselet, M. F. 1996. Cortical lesions induce an increase in cell number and PSA-NCAM expression in the subventricular zone of adult rats. J. Comp. Neurol. 368:439-454.

    PubMed  Google Scholar 

  130. Carmichael, S. T. and Chesselet, M. F. 2002. Synchronous neuronal activity is a signal for axonal sprouting after cortical lesions in the adult. J. Neurosci. 22:6062-6070.

    PubMed  Google Scholar 

  131. Cramer, S. C. and Chopp, M. 2000. Recovery recapitulates ontogeny. Trends Neurosci. 23:265-271.

    PubMed  Google Scholar 

  132. Finklestein, S. P. 1996. The potential use of neurotrophic growth factors in the treatment of cerebral ischemia. Adv. Neurol. 71:413-417; discussion 417–418.

    PubMed  Google Scholar 

  133. Stroemer, R. P., Kent, T. A., and Hulsebosch, C. E. 1995. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke 26:2135-2144.

    PubMed  Google Scholar 

  134. Witte, O. W. 1998. Lesion-induced plasticity as a potential mechanism for recovery and rehabilitative training. Curr. Opin. Neurol. 11:655-662.

    PubMed  Google Scholar 

  135. Witte, O. W. and Stoll, G. 1997. Delayed and remote effects of focal cortical infarctions: Secondary damage and reactive plasticity. Adv. Neurol. 73:207-227.

    PubMed  Google Scholar 

  136. Jones, T. A. and Schallert, T. 1992. Overgrowth and pruning of dendrites in adult rats recovering from neocortical damage. Brain Res. 581:156-160.

    PubMed  Google Scholar 

  137. Jones, T. A., Kleim, J. A., and Greenough, W. T. 1996. Synaptogenesis and dendritic growth in the cortex opposite unilateral sensorimotor cortex damage in adult rats: A quantitative electron microscopic examination. Brain Res. 733:142-148.

    PubMed  Google Scholar 

  138. Jones, T. A. 1999. Multiple synapse formation in the motor cortex opposite unilateral sensorimotor cortex lesions in adult rats. J. Comp. Neurol. 414:57-66.

    PubMed  Google Scholar 

  139. Harris, K. M. 1995. How multiple-synapse boutons could preserve input specificity during an interneuronal spread of LTP. Trends Neurosci. 18:365-369.

    PubMed  Google Scholar 

  140. Geinisman, Y. 1993. Perforated axospinous synapses with multiple, completely partitioned transmission zones: Probable structural intermediates in synaptic plasticity. Hippocampus 3:417-433.

    PubMed  Google Scholar 

  141. Geinisman, Y., Detoledo-Morrell, L., Morrell, F., Persina, I. S., and Beatty, M. A. 1996. Synapse restructuring associated with the maintenance phase of hippocampal long-term potentiation. J. Comp. Neurol. 368:413-423.

    PubMed  Google Scholar 

  142. Toni, N., Buchs, P. A., Nikonenko, I., Bron, C. R., and Muller, D. 1999. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402:421-425.

    PubMed  Google Scholar 

  143. Jones, T. A., Klintsova, A. Y., Kilman, V. L., Sirevaag, A. M., and Greenough, W. T. 1997. Induction of multiple synapses by experience in the visual cortex of adult rats. Neurobiol. Learn. Mem. 68:13-20.

    PubMed  Google Scholar 

  144. Meshul, C. K., Cogen, J. P., Cheng, H. W., Moore, C., Krentz, L., and McNeill, T. H. 2000. Alterations in rat striatal glutamate synapses following a lesion of the cortico-and/or nigrostriatal pathway. Exp. Neurol. 165:191-206.

    PubMed  Google Scholar 

  145. Seitz, R. J. and Freund, H. J. 1997. Plasticity of the human motor cortex. Adv. Neurol. 73:321-333.

    PubMed  Google Scholar 

  146. Prusky, G. and Whishaw, I. Q. 1996. Morphology of identified corticospinal cells in the rat following motor cortex injury: Absence of use-dependent change. Brain Res. 714:1-8.

    PubMed  Google Scholar 

  147. Forgie, M. L., Gibb, R., and Kolb, B. 1996. Unilateral lesions of the forelimb area of rat motor cortex: Lack of evidence for use-dependent neural growth in the undamaged hemisphere. Brain Res. 710:249-259.

    PubMed  Google Scholar 

  148. Voorhies, A. C. and Jones, T. A. 2002. The behavioral and dendritic growth effects of focal sensorimotor cortical damage depend on the method of lesion induction. Behav. Brain. Res. 133: 237-246.

    PubMed  Google Scholar 

  149. Liu, J., Yeo, H. C., Overvik-Douki, E., Hagen, T., Doniger, S.J., Chu, D.W., Brooks, G.A., Ames, B.N. 2002. Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J. Appl. Physiol. 89:21-28.

    Google Scholar 

  150. Taub, E., Miller, N. E., Novack, T. A., Cook, E. W., 3rd, Fleming, W. C., Nepomuceno, C. S., Connell, J. S., and Crago, J. E. 1993. Technique to improve chronic motor deficit after stroke. Arch. Phys. Med. Rehabil. 74:347-354.

    PubMed  Google Scholar 

  151. Schallert, T., Woodlee, M. T., and Fleming, S. M. 2002. Disentangling multiple types of recovery from brain injury. in Krieglstein, J. and Klumpp, S. (eds.), Pharmacology of Cerebral Ischemia, Stuttgart, Medpharm Scientific, pp. 201-216.

    Google Scholar 

  152. Denny-Brown, D. 1950. Disintegration of motor function resulting from cerebral lesions. J. Nervous Men. Dis. 112:1-45.

    Google Scholar 

  153. Winstein, C. J. and Pohl, P. S. 1995. Effects of unilateral brain damage on the control of goal-directed hand movements. Exp. Brain Res. 105:163-174.

    PubMed  Google Scholar 

  154. Liepert, J., Bauder, H., Wolfgang, H. R., Miltner, W. H., Taub, E., and Weiller, C. 2000. Treatment-induced cortical reorganization after stroke in humans. Stroke 31:1210-1216.

    PubMed  Google Scholar 

  155. Davis, J. M. and Bailey, S. P. 1997. Possible mechanisms of central nervous system fatigue during exercise. Med. Sci. Sports Exerc. 29:45-57.

    PubMed  Google Scholar 

  156. Bach-y-Rita, P. 1990. Brain plasticity as a basis for recovery of function in humans. Neuropsychologia 28:547-554.

    PubMed  Google Scholar 

  157. Bach-y-Rita, P. 1993. Recovery from brain damage. J. Neurol. Rehabil. 6:191-199.

    Google Scholar 

  158. Bach-y-Rita, P. 2000. Conceptual issues relevant to present and future neurologic rehabilitation pages 357-379, in Levin, H. and Grafman, J. (eds.), Neuroplasticity and Reorganization of Function After Brain Injury, New York, Oxford University Press.

    Google Scholar 

  159. Taub, E., Pidikiti, D., DeLuca, S. C., and Crago, J. E. 1996. Effects of motor restriction of an unimpaired upper extremity and training on improving functional tasks and altering brain/behaviors pages 133-154, in Toole, J. F. and Good, D. C. (eds.), Imaging in Neurologic Rehabilitation, New York, Demos Vermande.

    Google Scholar 

  160. Gentile, A. M., Green, S., Nieburgs, A., Schmelzer, W., and Stein, D. G. 1978. Disruption and recovery of locomotor and manipulatory behavior following cortical lesions in rats. Behav. Biol. 22:417-455.

    PubMed  Google Scholar 

  161. LeVere, T. E. 1988. Neural system imbalances and the consequences of large brain injuries. Pages 15-28, in Finger, S. (ed.), Brain Injury and Recovery: Theoretical and Controversial Issues, New York, Plenum.

    Google Scholar 

  162. Rose, F. D., Davey, M. J., Love, S., and Dell, P. A. 1987. Environmental enrichment and recovery from contralateral sensory neglect in rats with large unilateral neocortical lesions. Behav. Brain Res. 24:195-202.

    PubMed  Google Scholar 

  163. Schallert, T. 1988. Aging-dependent emergence of sensorimotor dysfunction in rats recovered from dopamine depletion sustained early in life. Ann. N Y Acad. Sci. 515:108-120.

    PubMed  Google Scholar 

  164. Schallert, T., Jones, T. A., Weaver, M. S., Fulton, R., Robinson, D., and Shapiro, L. E. 1992. Pharmacological and anatomical considerations in recovery of function. in Tucker, D. M. (ed.), State of the Art Reviews in Neuropsychology, Philadelphia, Hanley & Belfus.

    Google Scholar 

  165. Whishaw, I. Q. 2000. Loss of the innate cortical engram for action patterns used in skilled reaching and the development of behavioral compensation following motor cortex lesions in the rat. Neuropharmacology 39:788-805.

    PubMed  Google Scholar 

  166. Ostendorf, C. G. and Wolf, S. L. 1981. Effect of forced use of the upper extremity of a hemiplegic patient on changes in function: A single-case design. Phys. Ther. 61:1022-1028.

    PubMed  Google Scholar 

  167. Risedal, A., Zeng, J., and Johansson, B. B. 1999. Early training may exacerbate brain damage after focal brain ischemia in the rat. J. Cereb. Blood Flow Metab. 19:997-1003.

    PubMed  Google Scholar 

  168. Bland, S. T., Schallert, T., Strong, R., Aronowski, J., Grotta, J. C., and Feeney, D. M. 2000. Early exclusive use of the affected forelimb after moderate transient focal ischemia in rats: Functional and anatomic outcome. Stroke 31:1144-1152.

    PubMed  Google Scholar 

  169. Bland, S. T., Pillai, R. N., Aronowski, J., Grotta, J. C., and Schallert, T. 2001. Early overuse and disuse of the affected forelimb after moderately severe intraluminal suture occlusion of the middle cerebral artery in rats. Behav. Brain Res. 126:33-41.

    PubMed  Google Scholar 

  170. Humm, J. L., Kozlowski, D. A., Bland, S. T., James, D. C., and Schallert, T. 1999. Progressive expansion of brain injury by extreme behavioral pressure: Is glutamate involved? Exp. Neurol. 157:349-358.

    PubMed  Google Scholar 

  171. Humm, J. L., Kozlowski, D. A., James, D. C., Gotts, J. E., and Schallert, T. 1998. Use-dependent exacerbation of brain damage occurs during an early post-lesion vulnerable period. Brain Res. 783:286-292.

    PubMed  Google Scholar 

  172. Schallert, T. and Kozlowski, D. A. 1998. Brain damage and plasticity: Use-related enhanced neural growth and overuse-related exaggeration of injury. Pages 611-619, in Ginsberg, M. D. and Bogousslavsky, J. (eds.), Cerebrovascular Disease, New York, Blackwell Science.

    Google Scholar 

  173. Bland, S. T., Gonzalez, R. A., and Schallert, T. 1999. Movement-related glutamate levels in rat hippocampus, striatum, and sensorimotor cortex. Neurosci. Lett. 277:119-122.

    PubMed  Google Scholar 

  174. Schallert, T., Bland, S. T., Humm, J. L., Tillerson, J. L., Gonzales, R. A., Aronowski, J., and Grotta, J. C. 2000. Behavioral demand effects on recovery of function and neuroplasticity, in Levin, H. S. and Grafman, J. (eds.), Cerebral Reorganization of Function After Brain Damage, New York, Oxford University Press, pp. 145-167.

    Google Scholar 

  175. Zanier, E. R., Lee, S. M., Verspa, P. M., Giza, C. C., and Hovda, D. A. 2003. Increased hippocampal CA3 vulnerability to low-level kainic acid following lateral fluid percussion injury. J. Neurotrauma 20:409-420.

    PubMed  Google Scholar 

  176. Zhao, L. R., Mattsson, B., and Johansson, B. B. 2000. Environmental influence on brain-derived neurotrophic factor messenger RNA expression after middle cerebral artery occlusion in spontaneously hypertensive rats. Neuroscience 97:177-84.

    PubMed  Google Scholar 

  177. Zhao, L. R., Risedal, A., Wojcik, A., Hejzlar, J., Johansson, B. B., and Kokaia, Z. 2001. Enriched environment influences brain-derived neurotrophic factor levels in rat forebrain after focal stroke. Neurosci. Lett. 305:169-172.

    PubMed  Google Scholar 

  178. McAllister, A. K., Katz, L. C., and Lo, D. C. 1999. Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 22:295-318.

    PubMed  Google Scholar 

  179. Farrell, R., Evans, S., and Corbett, D. 2001. Environmental enrichment enhances recovery of function but exacerbates ischemic cell death. Neuroscience 107:585-592.

    PubMed  Google Scholar 

  180. Schallert, T., Fleming, S. M., Leasure, J. L., Tillerson, J. L., and Bland, S. T. 2000. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39:777-787.

    PubMed  Google Scholar 

  181. Schallert, T. and Woodlee, M. T. 2003. Brain-dependent movements and cerebral-spinal connections: Key targets of cellular and behavioral enrichment in CNS injury models. J. Rehabili. Res. Dev. 40(supp.):9-18.

    Google Scholar 

  182. Du, C., Hu, R., Csernansky, C. A., Hsu, C. Y., and Choi, D. W. 1996. Very delayed infarction after mild focal cerebral ischemia: A role for apoptosis? J. Cereb. Blood Flow Metab. 16:195-201.

    PubMed  Google Scholar 

  183. Conti, A. C., Raghupathi, R., Trojanowski, J. Q., and McIntosh, T. K. 1998. Experimental brain injury induces regionally distinct apoptosis during the acute and delayed posttraumatic period. J. Neurosci. 18:5663-5672.

    PubMed  Google Scholar 

  184. Dromerick, A. W., Edwards, D. F., and Hahn, M. 2000. Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke? Stroke 31:2984-2988.

    PubMed  Google Scholar 

  185. Goldstein, L. B. 2002. New approaches to poststroke rehabilitation. Pages 487-496, in Krieglstein, J. and Klumpp, S. (eds.), Pharmacology of Cerebral Ischemia, Stuttgart, Medpharm Scientific.

    Google Scholar 

  186. Modo, M., Zelaya, F., Lythgoe, D. J., Amaro, E., Beech, J. S., and Williams, S. C. R. 2002. Contemporary neuroimaging of cerebral ischemia. Pages 539-558, in Krieglstein, J. and Klumpp, S. (eds.), Pharmacology of Cerebral Ischemia, Stuttgart, Medpharm Scientific.

    Google Scholar 

  187. Fisher, B. and Sullivan, K. J. 2001. Activity-dependent factors affecting post-stroke functional outcomes. Top. Stroke Rehabil. 8:31-44.

    PubMed  Google Scholar 

  188. Hattori, S., Naoi, M., and Nishino, H. 1994. Striatal dopamine turnover during treadmill running in the rat: Relation to the speed of running. Brain Res. Bull. 35:41-49.

    PubMed  Google Scholar 

  189. Liste, I., Guerra, M. J., Caruncho, H. J., and Labandeira-Garcia, J. L. 1997. Treadmill running induces striatal Fos expression via NMDA glutamate and dopamine receptors. Exp. Brain Res. 115:458-468.

    PubMed  Google Scholar 

  190. Miyai, I., Fujimoto, Y., Yamamoto, H., Ueda, Y., Saito, T., Nozaki, S., and Kang, J. 2002. Long-term effect of body-weight-supported treadmill training in Parkinson's disease: A randomized controlled trial. Arch. Phys. Med. Rehabil. 83:1370-1373.

    PubMed  Google Scholar 

  191. Meeusen, R., Smolders, I., Sarre, S., de Meirleir, K., Keizer, H., Serneels, M., Ebinger, G., and Michotte, Y. 1997. Endurance training effects on neurotransmitter release in rat striatum: An in vivo microdialysis study. Acta Physiol. Scand. 159:335-41.

    PubMed  Google Scholar 

  192. Ouchi, Y., Kanno, T., Okada, H., Yoshikawa, E., Futatsubashi, M., Nobezawa, S., Torizuka, T., and Tanaka, K. 2001. Changes in dopamine availability in the nigrostriatal and mesocortical dopaminergic systems by gait in Parkinson's disease. Brain Dev. 124:784-792.

    Google Scholar 

  193. Barbeau, H. 2003. Locomotor training in neurorehabilitation: Emerging rehabilitation concepts. Neurorehabil. Neural Repair 17:3-11.

    PubMed  Google Scholar 

  194. DeBow, S.B., Davies, M. L., Clarke, H. L., and Colbourne, F. (2003). Constraint-induced movement therapy and rehabilitation exercises lessen motor deficits and volume of brain injury after striatal hemorrhagic stroke in rats. Stroke 34:1021-1026.

    PubMed  Google Scholar 

  195. Riolobos, A. S., Heredia, M., Fuente de la Criado, J. M., Yajey, J., Campos, J. M., Yajeya, J., Campos, J., and Santacana, M. 2001. Functional recovery of skilled forelimbe use in rats obliged to use the impaired limb after grafting of the frontal cortex lesion with homotopic cortex. Neurobiol. Learn. Mem. 75:274-292.

    PubMed  Google Scholar 

  196. Crafton, K. R., Mark, A. N., and Cramer, S. C. 2003. Improved understanding of cortical injury by incorporating measures of functional anatomy. Brain 126:1650-1659.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Schallert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleim, J.A., Jones, T.A. & Schallert, T. Motor Enrichment and the Induction of Plasticity Before or After Brain Injury. Neurochem Res 28, 1757–1769 (2003). https://doi.org/10.1023/A:1026025408742

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026025408742

Navigation