Skip to main content
Log in

Centric fission — simple and complex mechanisms

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Centric fission describes a rather poorly molecularly defined process of the transverse division of a functional centromere to result in two new centric chromosomes. While centric fission occurs rarely in humans, this process has been attributed an important role in eukaryotic karyotype evolution. Recent studies have given insight into the complex molecular mechanisms that lead to apparent centric fission events, including evidence in support of a mechanism driven by centric preduplication. These studies suggest that the traditional definition of centric fission, based on gross cytogenetic and molecular cytogenetic observations, needs to be broadened. It is necessary to distinguish between simple centric fissions, that involve the direct transverse breakage of a functional centromere, and other more complex fission events at or around a centromere that may be preceded by chromosomal rearrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amor DJ, Kalitsis P, Sumer H et al. (2004) Building the centromere: From foundation proteinsto 3D organisation. Trends Cell Biol (in press).

  • Andre MJ, Aurias A, de Berranger P et al. (1976) De novo trisomy 4p by 4p isochromosome. Ann Genet 19: 127.

    PubMed  CAS  Google Scholar 

  • Archidiacono N, Rocchi M, de Vonderweid U et al. (1978) t(9/22) with centric fission and NOR translocation leading to a case of pure 9p trisomy in the offspring. Hum Genet 40: 325–331.

    Article  PubMed  CAS  Google Scholar 

  • Atkins L, Feingold M (1969) 46, XY, 21qi-46, XY, 21pmosaicism in a child with Down's syndrome. J Med Genet 6: 206–208.

    PubMed  CAS  Google Scholar 

  • Badalian LO, Mutovin GR, Malygina NA et al. (1983) Rare case of mosaicism for chromosome 18, karyotype: 46, XX, del(18) (p11)/46, XX, i(18q). Genetika 19: 1912–1915.

    PubMed  CAS  Google Scholar 

  • Bakshi SR, Roy SK, Patel SJ et al. (2003) Centromeric transverse fission of chromosome 1 in a case of acute myelocytic leukemia. Cancer Genet Cytogenet 146: 173–175.

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi F, Karaguzel A, Celep F et al. (1996) Normal phenotype with maternal isodisomy in a female with two isochromosomes: i(2p) and i(2q). Am J Hum Genet 59: 1114–1118.

    PubMed  CAS  Google Scholar 

  • Bjorck EJ, Anderlid BM, Blennow E (1999) Maternal isodisomy of chromosome 9 with no impact on the phenotype in a woman with two isochromosomes: i(9p) and i(9q). Am J Med Genet 87: 49–52.

    Article  PubMed  CAS  Google Scholar 

  • Bogart MH, Fujita N, Serles L et al. (1995) Prenatal diagnosis of a stable de novo centric fission: a case report. Am J Med Genet 59: 36–37.

    Article  PubMed  CAS  Google Scholar 

  • Bugge M, Blennow E, Friedrich U et al. (1996) Tetrasomy 18p de novo: parental origin and different mechanisms of formation. Eur J Hum Genet 4: 160–167.

    PubMed  CAS  Google Scholar 

  • Chen H, Young R, Mu X et al. (1999) Uniparental isodisomy resulting from 46, XX, i(1p), i(1q) in a woman with short stature, ptosis, micro/retrognathia, myopathy, deafness, and sterility. Am J Med Genet 82: 215–218.

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Dong F, Langdon T et al. (2002) Functional rice centromeresare marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14: 1691–704.

    Article  PubMed  CAS  Google Scholar 

  • Choo KHA (1997a) The Centromere. New York: Oxford University Press.

    Google Scholar 

  • Choo KHA (1997b) Centromere DNA dynamics: latent centromeresand neocentromere formation. Am J Hum Genet 61: 1225–1233.

    Article  PubMed  CAS  Google Scholar 

  • Concolino D, Cinti R, Moricca M et al. (1998) Centric fission of chromosome 9 in a boy with trisomy 9p. Am J Med Genet 79: 35–37.

    Article  PubMed  CAS  Google Scholar 

  • Cordero JF, Miller WA, Liberfarb RM et al. (1977) Trisomy 5p: a variable phenotype. Pediatr Res 11: 525.

    Google Scholar 

  • Dallapiccola B, Mastroiacovo P, Gandini E (1976) Centric fission of chromosome no. 4 in the mother of two patients with trisomy 4p. Hum Genet 31: 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Darlington CD (1939) Misdivision and the genetics of the centromere. J Genet 37: 341–364.

    Google Scholar 

  • Del Porto G, Di Fusco C, Baldi M et al. (1984) Familial centric fission of chromosome 4. J Med Genet 21: 388–391.

    PubMed  CAS  Google Scholar 

  • Dunham MA, Neumann AA, Fasching CL et al. (2000) Telomere maintenance by recombination in human cells. Nat Genet 26: 447–450.

    Article  PubMed  CAS  Google Scholar 

  • Dutly F, Balmer D, Baumer A et al. (1998) Isochromosomes 12p and 9p: parental origin and possible mechanisms of formation. Eur J Hum Genet 6: 140–144.

    Article  PubMed  CAS  Google Scholar 

  • Eggermann T, Schubert R, Engels H et al. (1999) Formation of supernumerary euchromatic short arm isochromosomes: parent and cell stage of origin in new cases and review of the literature. Ann Genet 42: 75–80.

    PubMed  CAS  Google Scholar 

  • Egozcue J (1971) A possible case of centric fission in a primate. Experientia 27: 969–970.

    Article  PubMed  CAS  Google Scholar 

  • Fredga K, Bergstrom U (1970) Chromosome polymorphism in the root vole (Microtus oeconomus). Hereditas 66: 145–152.

    Article  PubMed  CAS  Google Scholar 

  • Fryns JP, Casaer P, van den Berghe H (1979) Mosaic 13 trisomy due to de novo 13/13 translocation with subsequent fission. Karyotype: 46, XX, _13, +t(13;13)(p11;q11)/46, XX, del(13)(p11). Hum Genet 46: 237–241.

    Article  PubMed  CAS  Google Scholar 

  • Fryns JP, Bulcke J, Hens L et al. (1980) Balanced transmission of centromeric fission products in man. Hum Genet 54: 127–128.

    Article  PubMed  CAS  Google Scholar 

  • Fryns JP, Kleczkowska A, Limbos C et al. (1985) Centric fission of chromosome 7 with 47, XX, del(7)(pter-cen:: q21-qter)+cen fr karyotype in a mother and proximal 7q deletion in two malformed newborns. Ann Genet 28: 248–250.

    PubMed  CAS  Google Scholar 

  • Gardner RJM, Sutherland GR (2004) Chromosome Abnormalities and Genetic Counselling. New York: Oxford University Press.

    Google Scholar 

  • Geneix A, Jaffray JY, Charbonne F et al. (1983) Trisomy of the short arm of 9 with isochromosome 9p and partial monosomy Yq. Ann Genet 26: 103–105.

    PubMed  CAS  Google Scholar 

  • Giusto JP, Margulis L (1981) Karyotypic fission theory and the evolution of old world monkeysand apes. Biosystems 13: 267–302. 638 J. Perry et al.

    Article  PubMed  CAS  Google Scholar 

  • Guanti G, Maritato F (1978) Unstable telocentric chromosome produced after centric misdivision of a 21q/21q translocated element. Hum Genet 45: 355–362.

    Article  PubMed  CAS  Google Scholar 

  • Hackel C (1969) Stable telocentric chromosomes produced following centric misdivision in Myrmeleotettix maculates (Thunb). Chromosoma 26: 140–147.

    Article  Google Scholar 

  • Hansen S (1975) A case of centric fission in man. Humangenetik 26: 257–259.

    PubMed  CAS  Google Scholar 

  • Harrington JJ, Van Bokkelen G, Mays RW et al. (1997) Formation of de novo centromeresand construction of first-generation human artificial microchromosomes. Nat Genet 15: 345–355.

    Article  PubMed  CAS  Google Scholar 

  • Herva R, Koivisto M (1979) Trisomy 9p with i(9p) and t(9q18p). Hum Genet 50: 237–240.

    Article  PubMed  CAS  Google Scholar 

  • Houck ML, Kumamoto AT, Cabrera RM et al. (1998) Chromosomal rearrangements in a Somali wild ass pedigree, Equus africanus somaliensis (Perissodactyla, Equidae). Cytogenet Cell Genet 80: 117–122.

    Article  PubMed  CAS  Google Scholar 

  • Howard-Peebles PN, Freidman JM, Harrod MJE et al. (1985) A stable supernumerary chromosome chromosome derived from a deleted segment of 17p. Am J Hum Genet 37: A97.

    Google Scholar 

  • Imai HT, Maruyama T, Gojobori T et al. (1986) Theoretical basis for karyotype evolution. 1. The minimum-interaction hypothesis. Am Nat 128: 900–920.

    Article  Google Scholar 

  • Imai HT, Takahata N, Maruyama T et al. (1988a) Theoretical bases for karyotype evolution. II. The fusion burst in man and mouse. Jpn J Genet 63: 313–342.

    PubMed  CAS  Google Scholar 

  • Imai HT, Taylor RW, Crosland MW et al. (1988b) Modesof spontaneous chromosomal mutation and karyotype evolution in antswith reference to the minimum interaction hypothesis. Jpn J Genet 63: 159–185.

    PubMed  CAS  Google Scholar 

  • Imai HT, Satta Y, Takahata N (2001) Integrative study on chromosome evolution of mammals, ants and wasps based on the minimum interaction theory. J Theor Biol 210: 475–497.

    Article  PubMed  CAS  Google Scholar 

  • Janke D (1982) Centric fission of chromosome no. 7 in three generations. Hum Genet 60: 200–201.

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Jin C, Salemark L et al. (2000) Centromere cleavage isa mechanism underlying isochromosome formation in skin and head and neck carcinomas.Chromosoma 109: 476–481.

    PubMed  CAS  Google Scholar 

  • John B, Hewitt GM (1968) Patternsand pathways of chromosome evolution within the Orthoptera. Chromosoma 25: 40–74.

    PubMed  CAS  Google Scholar 

  • Kaszas E, Birchler JA (1996) Misdivision analysis of centromere structure in maize. EMBO J 15: 5246–5255.

    PubMed  CAS  Google Scholar 

  • Kaszas E, Birchler JA (1998) Meiotic transmission rates correlate with physical features of rearranged centromeres in maize. Genetics 150: 1683–1692.

    PubMed  CAS  Google Scholar 

  • Kaszas E, Kato A, Birchler JA (2002) Cytological and molecular analysis of centromere misdivision in maize. Genome 45: 759–768.

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Sagai T, Yosida TH (1973) Stable telocentric chromosomes produced by centric fission in Chinese hamster cells in vitro.Chromosoma 40: 183–192.

    Article  PubMed  CAS  Google Scholar 

  • Kolnicki RL (1999) Karyotypic fission theory applied-Kinetochore reproduction and lemur evolution. Symbiosi 26: 123–141.

    Google Scholar 

  • Kolnicki RL (2000) Kinetochore reproduction in animal evolution: cell biological explanation of karyotypic fission theory. Proc Natl Acad Sci USA 97: 9493–9497.

    Article  PubMed  CAS  Google Scholar 

  • Kotzot D (2001) Complex and segmental uniparental disomy (UPD): review and lessons from rare chromosomal complements. J Med Genet 38: 497–507.

    Article  PubMed  CAS  Google Scholar 

  • Kotzot D, Bundscherer G, Bernasconi F et al. (1996) Isochromosome 18p results from maternal meiosis IInondisjunction. Eur J Hum Genet 4: 168–174.

    PubMed  CAS  Google Scholar 

  • Larson LM, Wasdahl WA, Saumur JH et al. (1978) Trisomy 18 syndrome with an unusual karyotype: possible double isochromosome. J Med Genet 15: 73–76.

    PubMed  CAS  Google Scholar 

  • Leschot NJ, Lim KS (1979) ''Complete'' trisomy 5p; de novo translocation t(2;5)(q36;p11) with isochromosome 5p. Case report and review of the literature. Hum Genet 46: 271–278.

    Article  PubMed  CAS  Google Scholar 

  • Lindenbaum RH, Woods CG, Norbury CG et al. (1991) An individual with a maternal disomy of chromosome 4 and iso (4p), iso(4q). Am J Hum Genet Supp 49: 1582.

    Google Scholar 

  • Lurie IW, Schwartz MF, Schwartz S et al. (1995) Trisomy 7presulting from isochromosome formation and whole-arm translocation. Am J Med Genet 55: 62–66.

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1932) A correlation of ring-shaped chromosomes with variegatin in Zea Mays. Proc Natl Acad Sci USA 18: 677–681.

    Article  PubMed  CAS  Google Scholar 

  • Melek M, Shippen DE (1996) Chromosome healing: spontaneousand programmed de novo telomere formation by telomerase. Bioessays 18: 301–308.

    Article  PubMed  CAS  Google Scholar 

  • Mertens F, Mandahl N, Mitelman F et al. (1994) Cytogenetic analysis in the examination of solid tumors in children. Pediatr Hematol Oncol 11: 361–377.

    PubMed  CAS  Google Scholar 

  • Meyne J, Baker RJ, Hobart HH et al. (1990) Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma 99: 3–10.

    Article  PubMed  CAS  Google Scholar 

  • Miller K, Pabst B, Ritter H et al. (2003) Chromosome 18 replaced by two ring chromosomes of chromosome 18 origin. Hum Genet 112: 343–347.

    PubMed  CAS  Google Scholar 

  • Muller H, Buhler EM, Signer E et al. (1972) Trisomy-18 syndrome caused by translocation or isochromosome formation. A case report with bibliography. J Med Genet 9: 462–467.

    PubMed  CAS  Google Scholar 

  • Niikawa N, Ishikawa M (1983) Whole-arm translocation between homologouschromos omes7 in a woman with successive spontaneous abortions. Hum Genet 63: 85–86.

    Article  PubMed  CAS  Google Scholar 

  • Nucaro A, Falchi AM, Monni G et al. (1988) Pseudomosaic centric fission of chromosome 4 in amniotic cells. Prenat Diagn 8: 629–631.

    PubMed  CAS  Google Scholar 

  • Orye E, Benoit Y, van Mele B (1983) Complete trisomy 5p owing to de novo translocation t(5;22)(q11;p11) with isochromosome 5p associated with a familial pericentric inversion of chromosome 2, inv 2(p21q11). J Med Genet 20: 394–396.

    PubMed  CAS  Google Scholar 

  • Page SL, Shaffer LG (1998) Chromosome stability is maintained by short intercentromeric distance in functionally dicentric human Robertsonian translocations. Chromosome Res 6: 115–122.

    Article  PubMed  CAS  Google Scholar 

  • Pauer HU, Hinney B, Michelmann HW et al. (1997) Relevance of genetic counselling in couples prior to intracytoplasmic sperm injection. Hum Reprod 12: 1909–1912.

    Article  PubMed  CAS  Google Scholar 

  • Petit P, Devriendt K, Vermeesch JR et al. (1998) Localization by FISH of centric fission breakpoints in a de novo trisomy 9p patient with i(9p) and t(9q;11p). Genet Couns 9: 215–221.

    PubMed  CAS  Google Scholar 

  • Prabhakar G, Schwartz S, Waters E et al. (1994) Complex karyotypic mosaicism as a result of non-disjunction and subsequent centromere fission. Prenat Diagn 14: 595–598.

    PubMed  CAS  Google Scholar 

  • Rhoades MM (1938) On the origin of a trisome through the doubling of a half-chromosome fragment. Genetics 23: 163–164.

    Google Scholar 

  • Richards EJ, Goodman HM, Ausubel FM (1991) The centromere region of Arabidopsis thaliana chromosome 1 contains telomere-similar sequences. Nucleic Acids Res 19: 3351–3357.

    PubMed  CAS  Google Scholar 

  • Rivera H, Cantu JM (1986) Centric fission consequences in man. Ann Genet 29: 223–225.

    PubMed  CAS  Google Scholar 

  • Rivera J, Rivas F (1992) Isochromosome/duplication of 10p and translocation of 10q. Am J Med Genet 42: 396–397.

    Article  PubMed  CAS  Google Scholar 

  • Rivera H, Garcia-Esquivel L, Jimenez-Sainz M et al. (1987)Centric fission, centromere-telomere fusion and isochromosome formation: a possible origin of a de novo 12ptrisomy. Clin Genet 31: 393–398.

    Article  PubMed  CAS  Google Scholar 

  • Rossi E, Floridia G, Casali M et al. (1993) Types, stability, and phenotypic consequences of chromosome rearrangements leading to interstitial telomeric sequences. J Med Genet 30: 926–931.

    PubMed  CAS  Google Scholar 

  • Sandig KR, Mucke J, Veit H (1979) Trisomy 9p resulting from de novo 9/15 translocation and a 9p isochromosome. Hum Genet 52: 175–178.

    PubMed  CAS  Google Scholar 

  • Sears ER (1952) Misdivision of univalents in common wheat. Chromosoma 4: 535–550.

    Article  PubMed  CAS  Google Scholar 

  • Shaffer LG, McCaskill C, Egli CA et al. (1997) Isthere an abnormal phenotype associated with maternal isodisomy for chromosome 2 in the presence of two isochromosomes?Am J Hum Genet 61: 461–462.

    PubMed  CAS  Google Scholar 

  • Sidwell RU, Pinson MP, Gibbons B et al. (2000) Pure trisomy 20p resulting from isochromosome formation and whole arm translocation. J Med Genet 37: 454–458.

    Article  PubMed  CAS  Google Scholar 

  • Singh L (1972) Evolution of karyotypes in snakes. Chromosoma 38: 185–236.

    Article  PubMed  CAS  Google Scholar 

  • Sinha AK, Nora JJ, Pathak S (1971) Isochromosomes arising from a human 'C'-autosome. Hum Hered 21: 231–237.

    PubMed  CAS  Google Scholar 

  • Sinha AK, Pathak S, Nora JJ (1972) A human family suggesting evidence for centric fission and stability of atelocentric chromosome. Hum Hered 22: 423–429.

    PubMed  CAS  Google Scholar 

  • Smith G, McCaa A, Kelly TE (1978) Trisomy 9p with an isochromosome of 9p. Hum Genet 42: 93–97.

    Article  PubMed  CAS  Google Scholar 

  • Southern DI (1969) Stable telocentric chromosome produced following centric misdivision in Myrmeleotettix maculates (Thunb.).Chromosoma 26: 140–147.

    Article  Google Scholar 

  • Speed RM (1986) Prophase pairing in a mosaic 18p-; iso 18q human female foetus studied by surface spreading. Hum Genet 72: 256–259.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan BA, Schwartz S (1995) Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum Mol Genet 4: 2189–2197.

    PubMed  CAS  Google Scholar 

  • Sullivan BA, Willard HF (1998) Stable dicentric X chromosomes with two functional centromeres. Nat Genet 20: 227–228.

    Article  PubMed  CAS  Google Scholar 

  • Surana RB, Stevens LJ, Gardner HA et al. (1976) Partial trisomy 9. Excerpta Med 397: 157.

    Google Scholar 

  • Takagi N, Sasaki M (1974) A phylogenetic study of bird karyotypes. Chromosoma 46: 91–120.

    Article  PubMed  CAS  Google Scholar 

  • Tanuja MT, Ramachandra NB, Ranganath HA (1999) Evolution of a new chromosomal lineage in a laboratory population of Drosophila through centric fission. J Biosci 24: 421–426.

    Article  Google Scholar 

  • Taylor KM, Wolfinger HL, Brown MG et al. (1975) Origin of a small metacentric chromosome: familial and cytogenic evidence. Clin Genet 8: 364–369.

    Article  PubMed  CAS  Google Scholar 

  • Therman E, Patau K, DeMars RI et al. (1963) Iso/telo-D1 mosaicism in a child with an incomplete D1 trisomy syndrome. Port Acta Biol A7: 211–214.

    Google Scholar 

  • Therman E, Sarto GE, DeMars RI (1981) The origin of telocentric chromosomes in man: a girl with tel(Xq). Hum Genet 57: 104–107.

    Article  PubMed  CAS  Google Scholar 

  • Todd NB (1970) Karyotypic fissioning and canid phylogeny. J Theor Biol 26: 445–480.

    Article  PubMed  CAS  Google Scholar 

  • Trommershausen-Bowling A, Millon L (1988) Centric fission in the karyotype of a mother-daughter pair of donkeys (Equus asinus). Cytogenet Cell Genet 47: 152–154.

    Article  PubMed  CAS  Google Scholar 

  • van den Berg C, Pijpers L, Halley DJ et al. (1999) Prenatal detection of trisomy 18 caused by isochromosome 18p and 18q formation. Am J Med Genet 86: 151–155.

    Article  PubMed  CAS  Google Scholar 

  • Webster TP, Hall WP, Williams EE (1972) Fission in the evolution of a lizard karyotype. Science 177: 611–613.

    PubMed  CAS  Google Scholar 

  • Wevrick R, Earnshaw WC, Howard-Peebles PN et al. (1990) Partial deletion of alpha satellite DNA associated with reduced amountsof the centromere protein CENP-B in amitotically stable human chromosome rearrangement. Mol Cell Biol 10: 6374–6380.

    PubMed  CAS  Google Scholar 

  • White MJD (1973) Animal Cytology and Evolution. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Whitehouse DB, Evans EP, George AM et al. (1985) Chromosome mosaicism in a zebra (Equus burchelli) abortus providesevidenc e for a different in-vivo/in-vitro survival of balanced and unbalanced karyotypes. J Reprod Fertil 73:401–403.

    Article  PubMed  CAS  Google Scholar 

  • Willard HF (1991) Evolution of alpha satellite. Curr Opin Genet Dev 1: 509–514.

    Article  PubMed  CAS  Google Scholar 

  • Yu HG, Dawe RK (2000) Functional redundancy in the maize meiotic kinetochore. J Cell Biol 151: 131–142.

    Article  PubMed  CAS  Google Scholar 

  • Zinkowski RP, Meyne J, Brinkley BR (1991) The centromere-kinetochore complex: a repeat subunit model. J Cell Biol 113: 1091–1110.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Andy Choo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perry, J., Slater, H.R. & Choo, K.H.A. Centric fission — simple and complex mechanisms. Chromosome Res 12, 627–640 (2004). https://doi.org/10.1023/B:CHRO.0000036594.38997.59

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CHRO.0000036594.38997.59

Navigation