Skip to main content
Log in

Iron-Induced Inhibition of Na+, K+-ATPase and Na+/Ca2+ Exchanger in Synaptosomes: Protection by the Pyridoindole Stobadine

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effect of oxidative stress, induced by Fe2+-EDTA system, on Na+,K+-ATPase, Na+/Ca2+ exchanger and membrane fluidity of synaptosomes was investigated. Synaptosomes isolated from gerbil whole forebrain were incubated in the presence of 200 μM FeSO4-EDTA per mg of protein at 37°C for 30 min. The oxidative insult reduced Na+,K+-ATPase activity by 50.7 ± 5.0 % and Na+/Ca2+ exchanger activity measured in potassium and choline media by 47.1 ± 7.2 % and 46.7 ± 8.6 %, respectively. Membrane fluidity was also significantly reduced as observed with the 1,6-diphenyl-1,3,5-hexatriene probe. Stobadine, a pyridoindole derivative, prevented the decrease in membrane fluidity and in Na+/Ca2+ exchanger activity. The Na+,K+-ATPase activity was only partially protected by this lipid antioxidant, indicating a more complex mechanism of inhibition of this protein. The results of the present study suggest that the Na+/Ca2+ exchanger and the Na+,K+-ATPase are involved in oxidation stress-mediated disturbances of intracellular ion homeostasis and may contribute to cell injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hall, E. D., and Braughler, J. M. 1993. Free radicals in CNS injury. Pages 81–105, in Waxman, S. G. (ed.), Molecular and Cellular Approaches to the Treatment of Neurological Disease, Raven Press, New York.

    Google Scholar 

  2. Halliwell, B. 1992. Reactive oxygen species and the central nervous system. J. Neurochem. 59:1609–1623.

    Google Scholar 

  3. Mishra, O. P., Delivoria-Papadopoulos, M., Cahillane, G., and Wagerle, L. C. 1989. Lipid peroxidation as the mechanism of modification of the affinity of the Na+,K+-ATPase active sites for ATP, K+, Na+, and strophanthidin in vitro. Neurochem. Res. 14: 845–851.

    Google Scholar 

  4. Deri Z., and Adam-Vizi, V. 1993. Detection of intracellular free Na+ concentration of synaptosomes by fluorescent indicator, Na+-binding benzofuran isopthalene: the effect of veratridine, ouabain, and α-latrotoxin. J. Neurochem. 60:818–825.

    Google Scholar 

  5. Pereira, C., Ferreira, C., Carvalho, C., and Oliveira, C. 1996. Contribution of plasma membrane and endoplasmic reticulum Ca2+-ATPases to the synaptosomal [Ca2+]i increase during oxidative stress. Brain Res. 713:269–277.

    Google Scholar 

  6. Rohn, T. T., Hinds, T. R., and Vincenzi, F. F. 1996. Inhibition of Ca2+-pump ATPase and the Na+/K+-pump ATPase by iron-generated free radicals. Protection by 6,7-dimethyl-2,4-di-1-pyrrolidinyl-7H-pyrrolo[2,3d] pyrimidine sulfate (U-89843D), a potent, novel, antioxidant/free radical scavenger. Biochem. Pharmacol. 51:471–476.

    Google Scholar 

  7. Račay, P., Bezáková, G., Kaplán, P., Lehotský, J., and Mézešová, V. 1994. Alteration in rabbit brain endoplasmic reticulum Ca2+ transport by free oxygen radicals in vitro. Biochem. Biophys. Res. Commun. 199:63–69.

    Google Scholar 

  8. Huang, W.-H., Wang, Y., and Askari, A. 1992. (Na+-K+)-ATPase: Inactivation and degradation induced by oxygen radicals. Int. J. Biochem. 24:621–625.

    Google Scholar 

  9. Clough, D., and Bünger, R. 1995. Protection by pyruvate against inhibition of Na+,K+-ATPase by a free radical generating system containing t-butylhydroperoxide. Life Sci. 57:931–943.

    Google Scholar 

  10. Viani, P., Zini, I., Cervato, G., Biagini, G., Agnati, L. F., and Cestaro, B. 1995. Effect of endothelin −1 induced ischemia on peroxidative damage and membrane properties in rat striatum synaptosomes. Neurochem. Res. 20:689–695.

    Google Scholar 

  11. Graham, E., Mishra, O. P., and Delivoria-Papadopoulos, M. 1993. Brain cell membrane Na+,K+-ATPase modification following hypoxia in the guinea pig fetus. Neurosci. Lett. 153:93–97.

    Google Scholar 

  12. Marro, P. J., McGowan, J. E., Razdan, B., Mishra, O. P., and Delivoria-Papadopoulos, M. 1994. Effect of allopurinol on uric acid levels and brain cell membrane Na+,K+-ATPase activity during hypoxia in newborn piglets. Brain Res. 650:9–15.

    Google Scholar 

  13. Rosenkrantz, T. S., Kubin, J., Mishra, O. P., Smith, D., and Delivoria-Papadopoulos, M. 1996. Brain cell membrane Na+,K+-ATPase activity following severe hypoxic injury and newborn piglet. Brain Res. 730:52–57.

    Google Scholar 

  14. Tretter, L., and Adam-Vizi, V. 1996. Early events in free radical-mediated damage of isolated nerve terminals: effect of peroxides on membrane potential and intracellular Na+ and Ca2+ concentrations. J. Neurochem. 66:2057–2066.

    Google Scholar 

  15. Blaustein, M. P., Fontana, G., and Rogowski, R. S. 1996. Na+-Ca2+ exchanger in rat brain synaptosomes. Kinetics and regulation. Ann. N.Y. Acad. Sci. 779:300–317.

    Google Scholar 

  16. Mark, R. J., Hensley, K., Butterfield, D. A., and Mattson, M. P. 1995. Amyloid β-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J. Neurosci. 15:6239–6249.

    Google Scholar 

  17. Stefek, M., and Benes, L. 1991. Pyridoindole stobadine is a potent scavenger of hydroxyl radicals. FEBS Lett. 294:264–266.

    Google Scholar 

  18. Steenken S., Sundquist A. R., Jovanovic, S. V., Crockett, R., and Sies, H. 1992. Antioxidant activity of the pyridoindole stobadine. Pulse radiolytic characterization of one-electron-oxidized stobadine and quenching of singlet molecular oxygen. Chem. Res. Toxicol. 5:355–360.

    Google Scholar 

  19. Ondriaš, K., Mišik, V., Gergel', D., and Staško, A. 1989. Lipid peroxidation of phosphatidylcholine liposomes depressed by the calcium channel blockers nifedipine and verapamil and by the antiarrhythmic-antihypoxic drug stobadine. Biochem. Biophys. Acta 1003:238–245.

    Google Scholar 

  20. Štefek, M., Masaryková, M., and Beneš, L. 1992. Inhibition of cumene hydroperoxide-induced lipid peroxidation by novel pyridoindole antioxidant in rat liver microsomes. Pharmacol. Toxicol. 70:407–411.

    Google Scholar 

  21. Štolc, S., and Horáková, L'. 1988. Effect of stobadine on postischemic lipid peroxidation in the rat brain. Pages 59–63, in Bartko, D., Turčáni, P., and Stern, G. (eds.), New Trends in Clinical Neuropharmacology, John Libbey, London and Paris.

    Google Scholar 

  22. Štolc, S., and Selecká, J. 1995. Protective effect of stobadine, a pyridoindole antioxidant, in hypoxia-reoxygenation injury: of ganglionic and hippocampal neurotransmission. Mol. Chem. Neuropathol. 25:199–212.

    Google Scholar 

  23. Horáková, L., Sies, H., and Steenken, S. 1994. Antioxidant action of stobadine. Methods in Enzymology 234:572–580.

    Google Scholar 

  24. Štolc, S., Vlkolinský, R., and Pavlásek, J. 1997: Neuroprotection by pyridoindole stobadine: a minireview. Brain Res. Bull. 42:335–340.

    Google Scholar 

  25. Račay, P., Kaplán, P., Lehotský, J., and Mézešová, V. 1995. Rabbit brain endoplasmic reticulum membranes as targets for free radicals. Changes in Ca2+ transport and protection by stobadine. Biochem. Mol. Biol. Int. 36: 569–577.

    Google Scholar 

  26. Račay, P., Kaplán, P., Mézešová, V., and Lehotský, J. 1997. Lipid peroxidation both inhibits Ca2+-ATPase and increases Ca2+ permeability of endoplasmic reticulum membrane. Biochem. Mol. Biol. Int. 41:647–655.

    Google Scholar 

  27. Kaplán, P., Račay, P., Lehotský, J., and Mézešová, V. 1995. Change in fluidity of brain endoplasmic reticulum membranes by oxygen free radicals: A protective effect of stobadine, α-tocopherol acetate and butylated hydroxytoluene. Neurochem. Res. 20: 815–820.

    Google Scholar 

  28. Edelman, A. M., Hunter, D. D., Hendrikson, A. E., and Krebs, E. G. 1985. Subcellular distribution of calcium-and calmodulin-dependent phosphorylating activity in rat cerebral cortex. J. Neurosci. 5:2609–2617.

    Google Scholar 

  29. Matejovičová, M., Macháč, S., Lehotský, J., Jakuš, J., and Mézešová, V. 1995. Synaptosomal Na, K-ATPase during forebrain ischemia in mongolian gerbils. Mol. Chem. Neuropathol. 29:67–78.

    Google Scholar 

  30. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  31. Reeves, J. P. 1988. Measurement of sodium-calcium exchange activity in plasma membrane vesicles. Methods Enzymol. 157: 505–510.

    Google Scholar 

  32. Pottel, H., Van der Meer, W., and Herreman, W. 1983. Correlation between the order parameter and steady the state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene and an evaluation of membrane fluidity. Biochem. Biophys. Acta 730:181–186.

    Google Scholar 

  33. Zaleska, M. M., and Floyd, R. A. 1985. Regional lipid peroxidation in rat brain in vitro: possible role of endogenous iron. Neurochem. Res. 10:397–410.

    Google Scholar 

  34. Chen, J., Zhang, L., Lian, X., and Hwang, F. 1992. Effect of hydroxyl radical on Na+-K+-ATPase activity of the brain microsomal membranes. Cell Biol. Int. Reports 16:927–936.

    Google Scholar 

  35. Thomas, C. E., and Reed, D. J. 1990. Radical-induced inactivation of kidney Na+-K+-ATPase: sensitivity to membrane lipid peroxidation and the protective effect of vitamin E. Arch. Biochem. Biophys. 281:96–105.

    Google Scholar 

  36. Chong, P. L.-G., Fortes, P. A. G., and Jameson, D. M. 1985. Mechanisms of inhibition of (Na,K)-ATPase by hydrostatic pressure studied with fluorescent probes. J. Biol. Chem. 260: 14484–14490.

    Google Scholar 

  37. Stanimirovic, D. B., Wong, J., Ball, R., and Durkin, J. P. 1995. Free radical induced endothelial membrane dysfunction at the site of blood-brain barrier: relationship between lipid peroxidation, Na, K-ATPase activity, and 51Cr release. Neurochem. Res. 20:1417–1427.

    Google Scholar 

  38. Siems, W. G., Hapner, S. J., and Vankuijk, F. J. G. M. 1996. 4-hydroxynonenal inhibits Na+,K+-ATPase. Free Radical. Biol. Med. 20:215–223.

    Google Scholar 

  39. Vasilets, L. A., and Schwarz W. 1994. The Na+/K+ pump: Structure and function of the alpha-subunit. Cell. Physiol. Biochem. 4:81–95.

    Google Scholar 

  40. Dwight, J. F. St. J., and Hendry, B. M. 1996. The effects of tert-butyl hydroperoxide on human erythrocyte membrane ion transport and the protective actions of antioxidants. Clin. Chim. Acta 249:167–181.

    Google Scholar 

  41. Horáková, L'. Schaur, R. J., and Balgavý, P. 1996. The crocin assay for the determination of relative rate constants of alkoxyl radical reactions with the pyridoindole stobadine and with other antioxidants. Redox Rep. 6:401–405.

    Google Scholar 

  42. Dixon, I. M. C., Kaneko, M., Hata, T., Panagia, V., and Dhalla, N. S. 1990. Alterations in cardiac membrane Ca2+ transport during oxidative stress. Mol. Cell. Biochem. 99:125–133.

    Google Scholar 

  43. Xie, Z., Wang, Y., Askari, A., Huang, W. H., Klaunig, J. K., and Askari, A. 1990. 22:911–920. Studies on the specificity of the effects of oxygen metabolites on cardiac sodium pump. J. Mol. Cell. Cardiol. 22:911–920.

    Google Scholar 

  44. Juhaszova, M., Shimizu, H., Borin, M. L., Yip, R. K., Santiago, E. M., Lindenmayer, G. E., and Blaustein, M. P. 1996. Localization of the Na+-Ca2+ exchanger in vascular smooth muscle, and in neurons and astrocytes. Ann. N.Y. Acad. Sci. 779:318–335.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplán, P., Matejovičová, M. & Mézešová, V. Iron-Induced Inhibition of Na+, K+-ATPase and Na+/Ca2+ Exchanger in Synaptosomes: Protection by the Pyridoindole Stobadine. Neurochem Res 22, 1523–1529 (1997). https://doi.org/10.1023/A:1021918931780

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021918931780

Navigation