Skip to main content
Themenschwerpunkt

Pawlowsch-Instrumentelle Transfereffekte bei Alkoholabhängigkeit

Published Online:https://doi.org/10.1024/0939-5911.a000256

Hintergrund: Alkoholabhängigkeit ist eine Verkettung ungünstiger Entscheidungen in Bezug auf Alkoholkonsum. Dieses Entscheidungsmuster scheint sich u. a wegen pawlowsch-instrumentellen Transfereffekten (PIT-Effekten) immer wieder zu reproduzieren. Ziel dieser Literaturzusammenschau ist, wichtige Befunde zum Zusammenhang zwischen PIT-Effekten und Suchterkrankungen zusammenzutragen und offene Fragen im Hinblick auf PIT bei Alkoholabhängigkeit aufzuzeigen. Methoden: Die Literaturzusammenschau nutzte keine systematische Literaturrecherche, sondern basierte auf den Recherchen im Rahmen der Forschergruppe 1617 (Learning and Habitization in Alcohol Dependence, LeAD) der Deutschen Forschungsgemeinschaft (DFG). Ergebnisse: PIT-Effekte könnten im Zusammenhang mit Alkoholabhängigkeit möglicherweise zu einem Teufelskreis führen. Dieser besteht aus der Verstärkung von PIT-Effekten durch Alkoholkonsum und verstärktem Alkoholkonsum aufgrund von verstärkten PIT-Effekten. Diskussion: PIT-Effekte bei Alkoholabhängigkeit sind bisher vorwiegend aus Tierstudien bekannt. Das PIT-Paradigma kann uns allerdings auch in der humanen Suchtforschung Aufschluss darüber geben, wie bestimmte Reizmuster Alkoholabhängige zum wiederholten Alkoholkonsum motivieren. Demnach können PIT-Experimente womöglich auch helfen Alkoholrückfälle vorherzusagen.


Pavlovian to Instrumental Transfer Effects in Alcohol Dependency

Background: Disadvantageous decisions with respect to alcohol consumption play a central role in alcohol dependency (AD). This decision making pattern seems to be in part a result of Pavlovian to Instrumental Transfer effects (PIT effects). The aim of this review is to summarize important findings on PIT within the scope of addiction disorders. Building on this, open questions in the field of human AD are discussed. Methods: This review is not based on a systematic and standardized literature research. Instead the review was based on the literature search conducted in group 1617 of the German Research Foundation (DFG; Learning and Habitization in Alcohol Dependence, LeAD). Selection of research articles was based on expert opinion. Results: PIT effects in AD might possibly lead to a vicious cycle consisting of enhanced PIT effects through alcohol consumption and enhanced alcohol consumption through enhanced PIT effects. Discussion: PIT effects in alcohol addiction are mainly known from animal studies. In human AD research the PIT paradigm may be able to reveal how particular cues disproportionally motivate AD patients to drink alcohol. PIT experiments thus have potential uses in the prediction of relapse and the measurement of addiction severity.

Literatur

  • Aragona, B. J. , Cleaveland, N. A. , Stuber, G. D. , Day, J. J. , Carelli, R. M. , Wightman, R. M. (2008). Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events. The Journal of Neuroscience, 28, 8821 – 8831. First citation in articleCrossrefGoogle Scholar

  • Balleine, B. W. , Liljeholm, M. , Ostlund, S. B. (2009). The integrative function of the basal ganglia in instrumental conditioning. Behavioural Brain Research, 199, 43 – 52. First citation in articleCrossrefGoogle Scholar

  • Beck, A. , Wüstenberg, T. , Genauck, A. , Wrase, J. , Schlagenhauf, F. , Smolka, M. N. et al. (2012). Effect of brain structure, brain function, and brain connectivity on relapse in alcohol-dependent patients. Archives of General Psychiatry, 69, 842 – 852. First citation in articleCrossrefGoogle Scholar

  • Bouton, M. E. (2007). Learning and Behavior: A Contemporary Synthesis. Sunderland, MA: Sinauer Associates. First citation in articleGoogle Scholar

  • Bray, S. , Rangel, A. , Shimojo, S. , Balleine, B. , O’Doherty, J. P. (2008). The neural mechanisms underlying the influence of Pavlovian cues on human decision making. The Journal of Neuroscience, 28, 5861 – 5866. First citation in articleCrossrefGoogle Scholar

  • Cacciapaglia, F. , Saddoris, M. P. , Wightman, R. M. , Carelli, R. M. (2012). Differential dopamine release dynamics in the nucleus accumbens core and shell track distinct aspects of goal-directed behavior for sucrose. Neuropharmacology, 62, 2050 – 2056. First citation in articleCrossrefGoogle Scholar

  • Corbit, L. H. , Balleine, B. W. (2005). Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of Pavlovian-instrumental transfer. The Journal of Neuroscience, 25, 962 – 970. First citation in articleCrossrefGoogle Scholar

  • Corbit, L. H. , Janak, P. H. (2007). Ethanol-associated cues produce general Pavlovian-instrumental transfer. Alcoholism: Clinical and Experimental Research, 31, 766 – 774. First citation in articleCrossrefGoogle Scholar

  • DiChiara, G. , Bassareo, V. (2007). Reward system and addiction: What dopamine does and doesn’t do. Current Opinion in Pharmacology, 7, 69 – 76. First citation in articleCrossrefGoogle Scholar

  • Dickinson, A. , Smith, J. , Mirenowicz, J. (2000). Dissociation of Pavlovian and instrumental incentive learning under dopamine antagonists. Behavioral Neuroscience, 114, 468 – 483. First citation in articleCrossrefGoogle Scholar

  • Everitt, B. J. , Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nature Neuroscience, 8, 1481 – 1489. First citation in articleCrossrefGoogle Scholar

  • Flagel, S. B. , Clark, J. J. , Robinson, T. E. , Mayo, L. , Czuj, A. , Willuhn, I. et al. (2011). A selective role for dopamine in stimulus-reward learning. Nature, 469(7328), 53 – 57. First citation in articleCrossrefGoogle Scholar

  • Geurts, D. E. M. , Huys, Q. J. M. , Den Ouden, H. E. M. , Cools, R. (in press). Aversive Pavlovian control of instrumental behaviour in humans. Journal of Cognitive Neuroscience. First citation in articleGoogle Scholar

  • Glasner, S. V. , Overmier, J. B. , Balleine, B. W. (2005). The role of Pavlovian cues in alcohol seeking in dependent and nondependent rats. Journal of Studies on Alcohol and Drugs, 66, 53 – 61. First citation in articleCrossrefGoogle Scholar

  • Guitart-Masip, M. , Huys, Q. J. , Fuentemilla, L. , Dayan, P. , Duzel, E. , Dolan, R. J. (2012). Go and no-go learning in reward and punishment: Interactions between affect and effect. NeuroImage, 62(1), 154 – 166. First citation in articleCrossrefGoogle Scholar

  • Heinz, A. , Beck, A. , Grüsser, S. M. , Grace, A. A. , Wrase, J. (2009). Identifying the neural circuitry of alcohol craving and relapse vulnerability. Addiction Biology, 14, 108 – 118. First citation in articleCrossrefGoogle Scholar

  • Heinz, A. , Siessmeier, T. , Wrase, J. , Hermann, D. , Klein, S. , Grüsser-Sinopoli, S. M. et al. (2004). Correlation between dopamine D2 receptors in the ventral striatum and central processing of alcohol cues and craving. American Journal of Psychiatry, 161, 1783 – 1789. First citation in articleCrossrefGoogle Scholar

  • Holmes, N. M. , Marchand, A. R. , Coutureau, E. (2010). Pavlovian to instrumental transfer: A neurobehavioural perspective. Neuroscience & Biobehavioral Reviews, 34, 1277 – 1295. First citation in articleCrossrefGoogle Scholar

  • Huys, Q. J. M. , Dayan, P. (2009). A Bayesian formulation of behavioral control. Cognition, 113, 314 – 328. First citation in articleCrossrefGoogle Scholar

  • Huys, Q. J. M. , Cools, R. , Gölzer, M. , Friedel, E. , Heinz, A. , Dolan, R. J. et al. (2011). Disentangling the roles of approach, activation and valence in instrumental and Pavlovian responding. PLoS Computational Biology, 7(4), e1002028. First citation in articleGoogle Scholar

  • Huys, Q. J. , Eshel, N. , O’Nions, E. , Sheridan, L. , Dayan, P. , Roiser, J. P. (2012). Bonsai trees in your head: how the Pavlovian system sculpts goal-directed choices by pruning decision trees. PLOS Computational Biology, 8(3), e1002410. First citation in articleGoogle Scholar

  • Kanfer, F. H. , Saslow, G. (1965). Behavioral analysis: An alternative to diagnostic classification. Archives of General Psychiatry, 12, 529 – 538. First citation in articleCrossrefGoogle Scholar

  • Jones, J. L. , Esber, G. R. , McDannald, M. A. , Gruber, A. J. , Hernandez, A. , Mirenzi, A. et al. (2012). Orbitofrontal cortex supports behavior and learning using inferred but not cached values. Science, 338(6109), 953 – 956. First citation in articleCrossrefGoogle Scholar

  • Michon, R. , Chebat, J. C. , Turley L. W., (2005). Mall atmospherics: The interaction effects of the mall environment on shopping behavior. Journal of Business Research, 58, 576 – 583. First citation in articleCrossrefGoogle Scholar

  • Mirenowicz, J. , Schultz, W. (1996). Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature, 379(6564), 449 – 451. First citation in articleCrossrefGoogle Scholar

  • Montague, P. R. , Dayan, P. , Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. The Journal of Neuroscience, 16, 1936 – 1947. First citation in articleCrossrefGoogle Scholar

  • Morris, G. , Nevet, A. , Arkadir, D. , Vaadia, E. , Bergman, H. (2006). Midbrain dopamine neurons encode decisions for future action. Nature Neuroscience, 9, 1057 – 1063. First citation in articleCrossrefGoogle Scholar

  • Müller, U. J. , Voges, J. , Steiner, J. , Galazky, I. , Heinze, H. J. , Möller, M. et al. (2012). Deep brain stimulation of the nucleus accumbens for the treatment of addiction. In G. R. Uhl, (Ed.), Addiction Reviews (Annals of the New York Academy of Sciences, Vol. 1282, pp. 119 – 128). Boston, MA: Blackwell. First citation in articleGoogle Scholar

  • Nadler, N. , Delgado, M. R. , Delamater, A. R. (2011). Pavlovian to instrumental transfer of control in a human learning task. Emotion, 11, 1112 – 1123. First citation in articleCrossrefGoogle Scholar

  • O’Doherty, J. , Dayan, P. , Schultz, J. , Deichmann, R. , Friston, K. , Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304(5669), 452 – 454. First citation in articleGoogle Scholar

  • Ostlund, S. B. , Balleine, B. W. (2009). On habits and addiction: An associative analysis of compulsive drug seeking. Drug Discovery Today: Disease Models, 5, 235 – 245. First citation in articleCrossrefGoogle Scholar

  • Pavlov, I. P. (1927). Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex (G. V. Anrep, Trans./Ed.). Mineola, NY: Dover Publications. (Original work published 1927). First citation in articleGoogle Scholar

  • Peciña, S. , Schulkin, J. , Berridge, K. (2006). Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: Paradoxical positive incentive effects in stress? BMC Biology, 4:8. DOI: 10.1186/1741 – 7007 – 4-8 First citation in articleGoogle Scholar

  • Pierce, R. C. , Kumaresan, V. (2006). The mesolimbic dopamine system: The final common pathway for the reinforcing effect of drugs of abuse? Neuroscience & Biobehavioral Reviews, 30, 215 – 238. First citation in articleCrossrefGoogle Scholar

  • Prévost, C. , Liljeholm, M. , Tyszka, J. M. , O’Doherty, J. P. (2012). Neural correlates of specific and general Pavlovian-to-instrumental transfer within human amygdalar subregions: A high-resolution fMRI study. The Journal of Neuroscience, 32, 8383 – 8390. First citation in articleCrossrefGoogle Scholar

  • Rescorla, R. A. , Solomon, R. L. (1967). Two-process learning theory: Relationships between Pavlovian conditioning and instrumental learning. Psychological Review, 74, 151 – 182. First citation in articleCrossrefGoogle Scholar

  • Ripley, T. L. , Borlikova, G. , Lyons, S. , Stephens, D. N. (2004). Selective deficits in appetitive conditioning as a consequence of ethanol withdrawal. European Journal of Neuroscience, 19, 415 – 425. First citation in articleCrossrefGoogle Scholar

  • Robinson, T. E. , Berridge, K. C. (2000). The psychology and neurobiology of addiction: An incentive-sensitization view. Addiction, 95(8 s2), 91 – 117. First citation in articleGoogle Scholar

  • Rothenberg, J. , Heinz, A. (1998). Meddling with monkey metaphors – Capitalism and the threat of impulsive desires. Social Justice, 25(2), 44 – 64. First citation in articleGoogle Scholar

  • Saddoris, M. P. , Stamatakis, A. , Carelli, R. M. (2011). Neural correlates of Pavlovian-to-instrumental transfer in the nucleus accumbens shell are selectively potentiated following cocaine self-administration. European Journal of Neuroscience, 33, 2274 – 2287. First citation in articleCrossrefGoogle Scholar

  • Schoenmakers, T. M. , de Bruin, M. , Lux, I. F. , Goertz, A. G. , Van Kerkhof, D. H. , Wiers, R. W. (2010). Clinical effectiveness of attentional bias modification training in abstinent alcoholic patients. Drug and Alcohol Dependence, 109(1), 30 – 36. First citation in articleCrossrefGoogle Scholar

  • Talmi, D. , Seymour, B. , Dayan, P. , Dolan, R. J. (2008). Human Pavlovian-Instrumental Transfer. The Journal of Neuroscience, 28, 360 – 368. First citation in articleCrossrefGoogle Scholar

  • Trick, L. , Hogarth, L. , Duka, T. (2011). Prediction and uncertainty in human Pavlovian to instrumental transfer. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 757 – 765. First citation in articleCrossrefGoogle Scholar

  • Volkow, N. D. , Wang, G.-J. , Telang, F. , Fowler, J. S. , Logan, J. , Childress, A.-R. et al. (2006). Cocaine cues and dopamine in dorsal striatum: Mechanism of craving in cocaine addiction. The Journal of Neuroscience, 26, 6583 – 6588. First citation in articleCrossrefGoogle Scholar

  • Wrase, J. , Schlagenhauf, F. , Kienast, T. , Wustenberg, T. , Bermpohl, F. , Kahnt, T. et al. (2007). Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. NeuroImage, 35, 787 – 794. First citation in articleCrossrefGoogle Scholar

  • Wu, H.-M. , Wang, X.-L. , Chang, C.-W. , Li, N. , Gao, L. , Geng, N. et al. (2010). Preliminary findings in ablating the nucleus accumbens using stereotactic surgery for alleviating psychological dependence on alcohol. Neuroscience Letters, 473, 77 – 81. First citation in articleCrossrefGoogle Scholar

  • Yin, H. H. , Knowlton, B. J. , Balleine, B. W. (2004). Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. European Journal of Neuroscience, 19, 181 – 189. First citation in articleCrossrefGoogle Scholar