Skip to main content
Original Article

Why Does Digit Ratio Research Fail to Give Any Implication Regarding the Organizational Effect of Prenatal Androgen?

Published Online:https://doi.org/10.1027/1614-0001/a000220

Abstract. The digit ratio is a putative biomarker for evaluating the organizational effects of prenatal testosterone. This evaluation was performed by relating postnatal traits to digit ratio. We examined the relationship among digit ratio, depression, and positive/negative affect. A total of 335 university students who completed a set of questionnaires had both of their hands scanned, and the digit ratios were measured using a computer program. All the studied variables were insignificantly related to the right-hand digit ratio. The variables remained insignificant even when the data for males and females were analyzed separately. Furthermore, a meta-analysis, including a previous study combined with current data, showed no association between digit ratio and depression, although the current sample size of 355 could detect r = 0.2 at α = 0.05, and β = 0.2. The lack of association between digit ratio and depression was common, and the present results corroborated those of previous studies, which showed no association between digit ratio and depression. This nil result would be least likely attributable to an inadequate sample size, considering that the current sample size of 335 allowed the detection of r = 0.2 at α = 0.05 and β = 0.2, nor idiosyncratic results, given that the meta-analysis with previous relevant studies also concluded the same results. We extensively reviewed the relevant literature and evaluated the use of digit ratio as a biomarker for prenatal testosterone exposure in seven different perspectives. Nearly all the analysis showed the problems of using digit ratio as a biomarker for evaluating the organizational effect of prenatal hormones.

References

  • Aronson, J. (2005). Biomarkers and surrogate endpoints. British Journal of Clinical Pharmacology, 59, 491–494. doi: 10.1111/j.1365-2125.2005.02435.x First citation in articleCrossrefGoogle Scholar

  • Austin, E. J., Manning, J. T., McInroy, K. & Mathews, E. (2002). A preliminary investigation of the associations between personality, cognitive ability and digit ratio. Personality and Individual Differences, 33, 1115–1124. doi: 10.1016/s0191-8869(02)00002-8 First citation in articleCrossrefGoogle Scholar

  • Auyeung, B., Lombardo, M. V. & Baron-Cohen, S. (2013). Prenatal and postnatal hormone effects on the human brain and cognition. Pflügers Archiv-European Journal of Physiology, 465, 557–571. doi: 10.1007/s00424-013-1268-2 First citation in articleCrossrefGoogle Scholar

  • Bailey, A. A. & Hurd, P. L. (2005). Depression in men is associated with more feminine finger length ratios. Personality and Individual Differences, 39, 829–836. doi: 10.1016/j.paid.2004.12.017 First citation in articleCrossrefGoogle Scholar

  • Beck-Peccoz, P., Padmanabhan, V., Baggiani, A. M., Cortelazzi, D., Buscaglia, M., Medri, G., … Beitins, I. Z. (1991). Maturation of hypothalamic-pituitary-gonadal function in normal human fetuses: Circulating levels of gonadotropins, their common a-subunit and free testosterone, and discrepancy between immunological and biological activities of circulating follicle-stimulating hormon. The Journal of Clinical Endocrinology & Metabolism, 73(3). doi: 10.1210/jcem-73-3-525#sthash.hAKAadBR.dpuf First citation in articleCrossrefGoogle Scholar

  • Berenbaum, S. A., Bryk, K. K., Nowak, N., Quigley, C. A. & Moffat, S. (2009). Fingers as a marker of prenatal androgen exposure. Endocrinology, 150, 5119–5124. doi: 10.1210/edrv.30.6.9988 First citation in articleCrossrefGoogle Scholar

  • Breedlove, S. M. (2010). Minireview: Organizational hypothesis: Instances of the fingerpost. Endocrinology, 151, 4116–4122. doi: 10.1210/en.2010-0041 First citation in articleCrossrefGoogle Scholar

  • Buck, J. J., Williams, R. M., Hughes, I. A. & Acerini, C. L. (2003). In-utero androgen exposure and 2nd to 4th digit length ratio-comparisons between healthy controls and females with classical congenital adrenal hyperplasia. Human Reproduction (Oxford, England), 18, 976–979. doi: 10.1093/humrep/deg198 First citation in articleCrossrefGoogle Scholar

  • Clements, J., Reyes, F., Winter, J. & Faiman, C. (1976). Studies on human sexual development. III. Fetal pituitary and serum, and amniotic fluid concentrations of LH, CG, and FSH. The Journal of Clinical Endocrinology & Metabolism, 42, 9–19. doi: 10.1210/jcem-42-1-9 First citation in articleCrossrefGoogle Scholar

  • Cohen-Bendahan, C. C. C. (2005). Biological roots of sex differences: A longitudinal twin study, Doctoral dissertation. University Medical Center Utrecht, The Netherlands. First citation in articleGoogle Scholar

  • Cohen-Bendahan, C. C., van de Beek, C. & Berenbaum, S. A. (2005). Prenatal sex hormone effects on child and adult sex-typed behavior: methods and findings. Neuroscience & Biobehavioral Reviews, 29, 353–384. doi: 10.1016/j.neubiorev.2004.11.004 First citation in articleCrossrefGoogle Scholar

  • Collaer, M. L. & Hines, M. (1995). Human behavioural sex differences: A role for gonadal hormones during early development? Psychology Bulletin, 118, 55–107. doi: 10.1037//0033-2909.118.1.55 First citation in articleCrossrefGoogle Scholar

  • Constantinescu, M. & Hines, M. (2012). Relating prenatal testosterone exposure to postnatal behavior in typically developing children: Methods and findings. Child Development Perspectives, 6, 407–413. doi: 10.1111/j.1750-8606.2012.00257.x First citation in articleCrossrefGoogle Scholar

  • Crawford, J. R. & Henry, J. D. (2003). The depression anxiety stress scales (DASS): Normative data and latent structure in a large non‐clinical sample. British Journal of Clinical Psychology, 42, 111–131. doi: 10.1348/014466503321903544 First citation in articleCrossrefGoogle Scholar

  • Crawford, J. R. & Henry, J. D. (2004). The positive and negative affect schedule (PANAS): Construct validity, measurement properties and normative data in a large non-clinical sample. British Journal of Clinical Psychology, 43, 245. doi: 10.1348/0144665031752934 First citation in articleCrossrefGoogle Scholar

  • Dean, A. & Sharpe, R. M. (2013). Anogenital distance or digit length ratio as measures of fetal androgen exposure: Relationship to male reproductive development and its disorders. The Journal of Clinical Endocrinology & Metabolism, 98, 2230–2238. doi: 10.1210/jc.2012-4057 First citation in articleCrossrefGoogle Scholar

  • Dressler, S. G. & Voracek, M. (2011). No association between two candidate markers of prenatal sex hormones: Digit ratios (2D:4D and other) and finger‐ridge counts. Developmental Psychobiology, 53, 69–78. doi: 10.1002/dev.20488 First citation in articleCrossrefGoogle Scholar

  • Elashoff, J. D. (1969). Analysis of covariance: A delicate instrument. American Educational Research Journal, 6, 383–401. doi: 10.2307/1161858 First citation in articleCrossrefGoogle Scholar

  • Endler, N. S., Macrodimitris, S. D. & Kocovski, N. L. (2000). Depression: The complexity of self‐report measures. Journal of Applied Biobehavioral Research, 5, 26–46. doi: 10.1111/j.1751-9861.2000.tb00062.x First citation in articleCrossrefGoogle Scholar

  • Evans, S. H. & Anastasio, E. J. (1968). Misuse of analysis of covariance when treatment effect and covariate are confounded. Psychological Bulletin, 69, 225. doi: 10.1037/h0025666 First citation in articleCrossrefGoogle Scholar

  • Finegan, J., Bartleman, B. & Wong, P. (1989). A window for the study of prenatal sex hormone influences on postnatal development. The Journal of Genetic Psychology, 150, 101–112. doi: 10.1080/00221325.1989.9914580 First citation in articleCrossrefGoogle Scholar

  • Fujita, F., Diener, E. & Sandvik, E. (1991). Gender differences in negative affect and well-being: The case for emotional intensity. Journal of Personality and Social Psychology, 61, 427. doi: 10.1037//0022-3514.61.3.427 First citation in articleCrossrefGoogle Scholar

  • Gorski, R., Gordon, J. H. & Shryne, A. M. S. (1978). Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Research, 148, 333–346. doi: 10.1016/0006-8993(78)90723-0 First citation in articleCrossrefGoogle Scholar

  • Hines, M. (2004). Brain gender. New York; Oxford: Oxford University Press. First citation in articleGoogle Scholar

  • Hiraishi, K., Sasaki, S., Shikishima, C. & Ando, J. (2012). The second to fourth digit ratio (2D:4D) in a Japanese twin sample: Heritability, prenatal hormone transfer, and association with sexual orientation. Archives of Sexual Behavior, 41, 711–724. doi: 10.1007/s10508-011-9889-z First citation in articleCrossrefGoogle Scholar

  • Hönekopp, J. (2013). No evidence that 2D:4D is related to the number of CAG repeats in the androgen receptor gene. Frontiers in Endocrinology, 4, 185. doi: 10.3389/fendo.2013.00185 First citation in articleCrossrefGoogle Scholar

  • Hönekopp, J. & Watson, S. (2010). Meta‐analysis of digit ratio 2D:4D shows greater sex difference in the right hand. American Journal of Human Biology, 22, 619–630. doi: 10.1002/ajhb.21054 First citation in articleCrossrefGoogle Scholar

  • Huhtaniemi, I. & Pelliniemi, L. J. (1992). Fetal Leydig cells: Cellular origin, morphology, life span, and special functional features. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, NY), 201, 125–140. doi: 10.3181/00379727-201-43493 First citation in articleCrossrefGoogle Scholar

  • Hunter, J. E. & Schmidt, F. L. (2004). Methods of meta-analysis: Correcting error ad bias in research findings (2nd ed.). Newbury Park, CA: Sage. First citation in articleCrossrefGoogle Scholar

  • Judd, H. L., Robinson, J. D., Young, P. E. & Jones, O. W. (1976). Amniotic fluid testosterone levels in midpregnancy. Obstetrics & Gynecology, 48, 690–692. First citation in articleGoogle Scholar

  • Knickmeyer, R. C., Woolson, S., Hamer, R. M., Konneker, T. & Gilmore, J. H. (2011). 2D:4D ratios in the first 2 years of life: Stability and relation to testosterone exposure and sensitivity. Hormones and Behavior, 60, 256–263. doi: 10.1016/j.yhbeh.2011.05.009 First citation in articleCrossrefGoogle Scholar

  • Kohn, M. A., Jarrett, M. S. & Senyak, J. (2016). UCSF clinical & translational science institute sample size calculators for designing clinical research. Retrieved from http://www.sample-size.net/about-us/ First citation in articleGoogle Scholar

  • Lawrance-Owen, A. J., Bargary, G., Bosten, J. M., Goodbourn, P. T., Hogg, R. E. & Mollon, J. (2013). Genetic association suggests that SMOC1 mediates between prenatal sex hormones and digit ratio. Human Genetics, 132, 415–421. doi: 10.1007/s00439-012-1259-y First citation in articleCrossrefGoogle Scholar

  • Lee, J. & Lee, H. P. (1989). A situation in which age-adjustment by covariance analysis may be inappropriate. International Journal of Epidemiology, 18, 280. doi: 10.1093/ije/18.1.280 First citation in articleCrossrefGoogle Scholar

  • Lei, X. Y., Xiao, L. M., Liu, Y. N. & Li, Y. M. (2016). Prevalence of depression among Chinese university students: A meta-analysis. PLoS One, 11, e0153454. doi: 10.1371/journal.pone.0153454 First citation in articleCrossrefGoogle Scholar

  • Liu, H., Li, S. & Feldman, M.W. (2013). Gender in marriage and life satisfaction under gender imbalance in China: The role of intergenerational support and SES. Social Indices Research, 114, 915–933. doi: 10.1007/s11205-012-0180-z First citation in articleCrossrefGoogle Scholar

  • Lord, F. M. (1969). Statistical adjustments when comparing preexisting groups. Psychological Bulletin, 72, 336. doi: 10.1037/h0028108 First citation in articleCrossrefGoogle Scholar

  • Lovibond, P. F. & Lovibond, S. H. (1995). The structure of negative emotional states: Comparison of the depression anxiety stress scales (DASS) with the beck depression and anxiety inventories. Behaviour Research and Therapy, 33, 335–343. doi: 10.1016/0005-7967(94)00075-u First citation in articleCrossrefGoogle Scholar

  • Lutchmaya, S., Baron-Cohen, S., Raggatt, P., Knickmeyer, R. & Manning, J. T. (2004). 2nd to 4th digit ratios, fetal testosterone and estradiol. Early Human Development, 77, 23–28. doi: 10.1016/j.earlhumdev.2003.12.002 First citation in articleCrossrefGoogle Scholar

  • Manning, J. T., Bundred, P. E., Newton, D. J. & Flanagan, B. F. (2003). The second to fourth digit ratio and variation in the androgen receptor gene. Evolution and Human Behavior, 24, 399–405. doi: 10.1016/s1090-5138(03)00052-7 First citation in articleCrossrefGoogle Scholar

  • Manning, J. T., Scutt, D., Wilson, J. & Lewis-Jones, D. I. (1998). The ratio of 2nd to 4th digit length: A predictor of sperm numbers and concentrations of testosterone, luteinizing hormone and oestrogen. Human Reproduction (Oxford, England), 13, 3000–3004. doi: 10.1093/humrep/13.11.3000 First citation in articleCrossrefGoogle Scholar

  • Martin, S., Manning, J. & Dowrick, C. (1999). Fluctuating asymmetry, relative digit length, and depression in men. Evolution and Human Behavior, 20, 203–214. doi: 10.1016/s1090-5138(99)00006-9 First citation in articleCrossrefGoogle Scholar

  • McIntyre, M. (2006). The use of digit ratios as markers for perinatal androgen action. Reproductive Biological Endocrinology, 4, 10. doi: 10.1186/1477-7827-4-10 First citation in articleCrossrefGoogle Scholar

  • Medland, S. E., Loehlin, J. C. & Martin, N. G. (2008). No effects of prenatal hormone transfer on digit ratio in a large sample of same- and opposite-sex dizygotic twins. Personality and Individual Differences, 44, 1225–1234. doi: 10.1016/j.paid.2007.11.017 First citation in articleCrossrefGoogle Scholar

  • Medland, S. E., Zayats, T., Glaser, B., Nyholt, D. R., Gordon, S. D., Wright, M. J., … Timpson, N. J. (2010). A variant in LIN28B is associated with 2D:4D finger-length ratio, a putative retrospective biomarker of prenatal testosterone exposure. The American Journal of Human Genetics, 86, 519–525. doi: 10.1016/j.ajhg.2010.02.017 First citation in articleCrossrefGoogle Scholar

  • Miller, G. A. & Chapman, J. P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal Psychology, 110, 40. doi: 10.1037//0021-843x.110.1.40 First citation in articleCrossrefGoogle Scholar

  • Nolen-Hoeksema, S. (2001). Gender differences in depression. Current Directions in Psychological Science, 10, 173–176. doi: 10.1111/1467-8721.00142 First citation in articleCrossrefGoogle Scholar

  • Phoenix, C. H., Goy, R. W., Gerall, A. A. & Young, W. C. (1959). Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology, 65, 369–382. doi: 10.1210/endo-65-3-369 First citation in articleCrossrefGoogle Scholar

  • Piccinelli, M. & Wilkinson, G. (2000). Gender differences in depression. Critical review. The British Journal of Psychiatry, 177, 486–492. doi: 10.1192/bjp.177.6.486 First citation in articleCrossrefGoogle Scholar

  • Putz, D. A., Gaulin, S. J., Sporter, R. J. & McBurney, D. H. (2004). Sex hormones and finger length: What does 2D:4D indicate? Evolution and Human Behavior, 25, 182–199. doi: 10.1016/j.evolhumbehav.2004.03.005 First citation in articleCrossrefGoogle Scholar

  • Reichardt, C. S. & Bormann, C. A. (1994). Using regression models to estimate program effects. In J. WholeyH. HatryK. NewcomerEds., Handbook of practical program evaluation (pp. 417–455). San Francisco, CA: Jossey-Bass. First citation in articleGoogle Scholar

  • Rodeck, C., Gill, D., Rosenberg, D. & Collins, W. (1985). Testosterone levels in midtrimester maternal and fetal plasma and amniotic fluid. Prenatal Diagnosis, 5, 175–181. doi: 10.1002/pd.1970050303 First citation in articleCrossrefGoogle Scholar

  • Singh, R., Singh, L. & Thangaraj, K. (2007). Phenotypic heterogeneity of mutations in androgen receptor gene. Asian Journal of Andrology, 9, 147–179. doi: 10.1111/j.1745-7262.2007.00250.x First citation in articleCrossrefGoogle Scholar

  • Smedley, K. D., McKain, K. J. & McKain, D. N. (2014). 2D:4D digit ratio predicts depression severity for females but not for males. Personality and Individual Differences, 70, 136–139. doi: 10.1016/j.paid.2014.06.039 First citation in articleCrossrefGoogle Scholar

  • Speiser, P. W. & White, P. C. (2003). Congenital adrenal hyperplasia. New England Journal of Medicine, 349, 776–788. doi: 10.1056/nejmra021561 First citation in articleCrossrefGoogle Scholar

  • Suckling, J. (2011). Correlated covariates in ANCOVA cannot adjust for pre-existing differences between groups. Schizophrenia Research, 126, 310–311. doi: 10.1016/j.schres.2010.08.034 First citation in articleCrossrefGoogle Scholar

  • Sun, J., Buys, N. & Wang, X. (2011). Depressive symptoms, family functioning, university environment, and social support: A population based study in university students in Beijing China. International Journal of Psychology and Behavioral Sciences, 1, 41–47. doi: 10.5923/j.ijpbs.20110101.06 First citation in articleCrossrefGoogle Scholar

  • Thompson, B. (1992). Editorial comment: Guest editorial misuse of ANCOVA and related “statistical control” procedures. Reading Psychology: An International Quarterly, 13, 3–18. doi: 10.1080/027027192130101 First citation in articleCrossrefGoogle Scholar

  • Trivers, R., Manning, J. & Jacobson, A. (2006). A longitudinal study of digit ratio (2D:4D) and other finger ratios in Jamaican children. Hormones and Behavior, 49, 150–156. doi: 10.1016/j.yhbeh.2005.05.023 First citation in articleCrossrefGoogle Scholar

  • van Anders, S. M., Vernon, P. A. & Wilbur, C. J. (2006). Finger-length ratios show evidence of prenatal hormone-transfer between opposite-sex twins. Hormones and Behavior, 49, 315–319. doi: 10.1016/j.yhbeh.2005.08.003 First citation in articleCrossrefGoogle Scholar

  • van de Beek, C., Thijssen, J. H., Cohen-Kettenis, P. T., van Goozen, S. H. & Buitelaar, J. K. (2004). Relationships between sex hormones assessed in amniotic fluid, and maternal and umbilical cord serum: What is the best source of information to investigate the effects of fetal hormonal exposure? Hormones and Behavior, 46, 663–669. doi: 10.1016/j.yhbeh.2004.06.010 First citation in articleCrossrefGoogle Scholar

  • Voracek, M. (2014). No effects of androgen receptor gene CAG and GGC repeat polymorphisms on digit ratio (2D:4D): A comprehensive meta-analysis and critical evaluation of research. Evolution and Human Behavior, 35, 430–437. doi: 10.1016/j.evolhumbehav.2014.05.009 First citation in articleCrossrefGoogle Scholar

  • Voracek, M. & Dressler, S.G. (2007). Digit ratio (2D:4D) in twins: Heritability estimates and evidence for a masculinized trait expression in women from opposite-sex pairs. Psychological Reports, 100, 115–126. doi: 10.2466/pr0.100.1.115-126 First citation in articleCrossrefGoogle Scholar

  • Wang, X., Sun, Y., An, J., Hao, J. H. & Tao, F. B. (2013). Gender difference on depressive symptoms among Chinese children and adolescents. Zhonghua, Liu Xing Bing Xue Za Zhi, 34, 893–896. https://www.ncbi.nlm.nih.gov/pubmed/24331965 First citation in articleGoogle Scholar

  • Watson, D., Clark, L. A. & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54, 1063–1070. doi: 10.1037//0022-3514.54.6.1063 First citation in articleCrossrefGoogle Scholar

  • Zarrouf, F. A., Artz, S., Griffith, J., Sirbu, C. & Kommor, M. (2009). Testosterone and depression: Systematic review and meta-analysis. Journal of Psychiatric Practice, 15, 289–305. doi: 10.1097/01.pra.0000358315.88931.fc First citation in articleCrossrefGoogle Scholar

  • Zitzmann, M. (2009). The role of the CAG repeat androgen receptor polymorphism in andrology. Frontiers of Hormone Research, 37, 52–61. doi: 10.1159/000175843 First citation in articleCrossrefGoogle Scholar