Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1

Abstract

The proliferation of mammalian cells is under strict control, and the cyclin-dependent-kinase inhibitory protein p27Kip1 is an essential participant in this regulation both in vitro and in vivo 1. Although mutations in p27Kip1 are rarely found in human tumours, reduced expression of the protein correlates well with poor survival among patients with breast or colorectal carcinomas2, suggesting that disruption of the p27Kip1 regulatory mechanisms contributes to neoplasia. The abundance of p27Kip1 in the cell is determined either at or after translation3, for example as a result of phosphorylation by cyclinE/Cdk2 complexes4,5, degradation by the ubiquitin/proteasome pathway6, sequestration by unknown Myc-inducible proteins7, binding to cyclinD/Cdk4 complexes8, or inactivation by the viral E1A oncoprotein9. We have found that a mouse 38K protein (p38) encoded by the Jab1 gene10 interacts specifically with p27Kip1 and show here that overexpression of p38 in mammalian cells causes the translocation of p27Kip1 from the nucleus to the cytoplasm, decreasing the amount of p27Kip1 in the cell by accelerating its degradation. Ectopic expression of p38 in mouse fibroblasts partially overcomes p27Kip1-mediated arrest in the G1 phase of the cell cycle and markedly reduces their dependence on serum. Our findings indicate that p38 functions as a negative regulator of p27Kip1 by promoting its degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction of p38Jab1 with p27Kip1.
Figure 2: Downregulation of p27Kip1 by p38Jab1.
Figure 3: Subcellular localization of p27Kip1 variants in the presence and absence of p38Jab1.
Figure 4: Ectopic p38Jab1 expression partially overcomes p27Kip1-mediated G1 arrest and reduces the serum dependence of cells.

Similar content being viewed by others

References

  1. Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Steeg, P. S. & Abrams, J. S. Cancer prognostics: Past, present and p27. Nature Med. 3, 152–154 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Hengst, L. & Reed, S. I. Translational control of p27Kip1 accumulation during the cell cycle. Science 271, 1861–1864 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Sheaff, R. J., Groudine, M., Gordon, M., Roberts, J. M. & Clurman, B. E. Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev. 11, 1464–1478 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Vlach, J., Hennecke, S. & Amati, B. Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27Kip1. EMBO J. 16, 5334–5344 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pagano, M. et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269, 682–685 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Vlach, J., Hennecke, S., Alevizopoulos, K., Conti, D. & Amati, B. Growth arrest by the cyclin-dependent kinase inhibitor p27Kip1 is abrogated by c-Myc. EMBO J. 15, 6595–6604 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Polyak, K. et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Dev. 8, 9–22 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Mal, A. et al. Inactivation of p27Kip1 by the viral E1A oncoprotein in TGFβ-treated cells. Nature 380, 262–265 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Claret, F. X. et al. Anew group of conserved coactivators that increase the specificity of AP-1 transcription factors. Nature 383, 453–457 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Durfee, T. et al. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 7, 555–569 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Polyak, K. et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cells 78, 59–66 (1994).

    Article  CAS  Google Scholar 

  13. Hofmann, K. & Bucher, P. The PCI domain: a common theme in three multiprotein complexes. Trends Biochem. Sci. 23, 204–205 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Asano, K. et al. Structure of cDNAs encoding human eukaryotic initiation factor 3 subunits. Possible roles in RNA binding and macromolecular assembly. J. Biol. Chem. 272, 27042–27052 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Matsuoka, S. et al. p57Kip2, a structurally distinct member of the p21Cip1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 9, 650–662 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Ogawa, H., Inouye, S., Tsuji, F. I., Yasuda, K. & Umesono, K. Localization, trafficking, and temperature-dependence of the Aequorea green fluorescent protein in cultured vertebrate cells. Proc. Natl Acad. Sci. USA 92, 11899–11903 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rock, K. L. et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Nishi, K. et al. Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J. Biol. Chem. 269, 6320–6324 (1994).

    CAS  PubMed  Google Scholar 

  19. Fukuda, M. et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390, 308–311 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Fukuda, M., Gotoh, I., Adachi, M., Gotoh, Y. & Nishida, E. Anovel regulatory mechanism in the mitogen-activated protein (MAP) kinase cascade. Role of nuclear export signal of MAP kinase kinase.. J. Biol. Chem. 272, 32642–32648 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Coats, S., Flanagan, W. M., Nourse, J. & Roberts, J. M. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science 272, 877–880 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Seeger, M. et al. Anovel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits. FASEB J. 12, 469–478 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Wei, N. et al. The COP9 complex is conserved between plants and mammals and is related to the 26S proteasome regulatory complex. Curr. Biol. 8, 919–922 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Glickman, M. H. et al. Asubcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615–623 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Harper, J. W., Adami, G., Wei, N., Keyomarsi, K. & Elledge, S. J. The 21 kd Cdk interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Hirai, H., Roussel, M. F., Kato, J.-y., Ashmun, R. A. & Sherr, C. J. Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol. Cell. Biol. 15, 2672–2681 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Akamatsu, E., Tanaka, T. & Kato, J.-y. Transcription factor E2F and cyclin E/cdk2 complex cooperate to induce chromosomal DNA replication in Xenopus oocytes. J. Biol. Chem. 273, 16494–16500 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Kato, J.-y., Matsushime, H., Hiebert, S. W., Ewen, M. E. & Sherr, C. J. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase, CDK4. Genes Dev. 7, 331–342 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Tanaka, M. & Herr, W. Differential transcriptional activation by Oct-1 and Oct-2: interdependent activation domains induce Oct-2 phosphorylation. Cell 60, 375–386 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, C. & Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. J. Sherr, J. Fujisawa, D. O. Morgan, F. Claret, K. Umesono, M. Yoshida and N. Kato for materials, and N. Sanechika for construction of p27 mutants. This work was supported by grants-in-Aid for Scientific Research and for Cancer Research from the Ministry of Education, Science, and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ya Kato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomoda, K., Kubota, Y. & Kato, Jy. Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature 398, 160–165 (1999). https://doi.org/10.1038/18230

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18230

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing