Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Continued RAG expression in late stages of B cell development and no apparent re-induction after immunizion

Abstract

Models of B-cell development in the immune system suggest that only those immature B cells in the bone marrow that undergo receptor editing express V (D)J -recombination-activating genes (RAGs)1,2,3. Here we investigate the regulation of RAG expression in transgenic mice carrying a bacterial artificial chromosome that encodes a green fluorescent protein reporter instead of RAG2 (ref. 4). We find that the reporter is expressed in all immature B cells in the bone marrow and spleen. Endogenous RAG messenger RNA is expressed in immature B cells in bone marrow and spleen and decreases by two orders of magnitude as they acquire higher levels of surface immunoglobulin M (IgM). Once RAG expression is stopped it is not re-induced during immune responses. Our findings may help to reconcile a series of apparently contradictory observations, and suggest a new model for the mechanisms that regulate allelic exclusion, receptor editing and tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GFP expression in B cells from NG-BAC transgenic mice 6–8 weeks old.
Figure 2: RAG expression in NG-BAC transgenic spleen cells.
Figure 3: RAG2 expression and RSS breaks in purified spleen B cells.
Figure 4: Immune response to NP-CGG by GFP+ and GFP spleen B cells.

Similar content being viewed by others

References

  1. Gay, D., Saunders, T., Camper, S. & Weigert, M. Receptor editing: an approach by autoreactive B cells to escape tolerance. J. Exp. Med. 177, 999–1008 (1993).

    Article  CAS  Google Scholar 

  2. Tiegs, S. L., Russell, D. M. & Nemazee, D. Receptor editing in self-reactive bone marrow B cells. J. Exp. Med. 177, 1009–1020 (1993).

    Article  CAS  Google Scholar 

  3. Grawunder, U.et al. Down-regulation of RAG1 and RAG2 gene expression in preB cells after functional immunoglobulin heavy chain rearrangement. Immunity 3, 601–608 (1995).

    Article  CAS  Google Scholar 

  4. Yang, X. W., Model, P. & Heintz, N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nature Biotechnol. 15, 859–865 (1997).

    Article  CAS  Google Scholar 

  5. Lin, W. C. & Desiderio, S. Regulation of V(D)J recombination activator protein RAG-2 by phosphorylation. Science 260, 953–959 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Allman, D. M., Ferguson, S. E. & Canero, M. P. Peripheral B cell maturation. I. Immature peripheral B cells in adults are heat-stable antigenhi and exhibit unique signaling characteristics. J. Immunol. 149, 2533–2540 (1992).

    CAS  PubMed  Google Scholar 

  7. Rolink, A. G., Andersson, J. & Melchers, F. Characterization of immature B cells by a novel monoclonal antibody, by turnover and by mitogen reactivity. Eur. J. Immunol. 28, 3738–3748 (1998).

    Article  CAS  Google Scholar 

  8. Han, S., Zheng, B., Schatz, D. G., Spanopoulou, E. & Kelsoe, G. Neoteny in lymphocytes: Rag1 and Rag2 expression in germinal center B cells. Science 274, 2094–7 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Hikida, M.et al. Reexpression of RAG-1 and RAG-2 genes in activated mature mouse B cells. Science 274, 2092–2094 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Hertz, M., Kouskoff, V., Nakamura, T. & Nemazee, D. V (D)J recombinase induction in splenic B lymphocytes is inhibited by antigen-receptor signalling. Nature 394, 292–295 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Meffre, E.et al. Antigen receptor engagement turns off the V(D)J recombination machinery in human tonsil B cells. J. Exp. Med. 188, 765–772 (1998).

    Article  CAS  Google Scholar 

  12. Forster, I. & Rajewsky, K. The bulk of the peripheral B-cell pool in mice is stable and not rapidly renewed from the bone marrow. Proc. Natl Acad. Sci. USA 87, 4781–4784 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Papavasiliou, F.et al. V(D)J recombination in mature B cells a new mechanism for diversification of antibody responses. Science 278, 298–301 (1997).

    Article  CAS  Google Scholar 

  14. Russell, DM.et al. Peripheral deletion of self-reactive B cells. Nature 354, 308–311 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Hartley, S. B.et al. Elimination from peripheral lymphoid tissues of self-reactive B lymphocytes recognizing membrane-bound antigens. Nature 353, 765–769 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Pelanda, R.et al. Receptor editing in a transgenic mouse model: site, efficiency, and role in B cell tolerance and antibody diversification. Immunity 7, 765–775 (1997).

    Article  CAS  Google Scholar 

  17. Han, S.et al. V(D)J recombinase activity in a subset of germinal center B lymphocytes. Science 278, 301–305 (1997).

    Article  CAS  Google Scholar 

  18. von Boehmer, H. & Fehling, H. J. Structure and function of the pre-T cell receptor. Annu. Rev. Immunol. 15, 433–452 (1997).

    Article  CAS  Google Scholar 

  19. Turka, L. A.et al. Thymocyte expression of RAG-1 and RAG-2; termination by T cell receptor cross-linking. Science 253, 778–781 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Colcclough, C., Perry, R. P., Karjalainen, K. & Weigert, M. Aberrant rearrangements contribute significantly to the allelic exclusion of immunoglobulin gene expression. Nature 290, 372–378 (1981).

    Article  ADS  Google Scholar 

  21. Storb, U. in Immunoglobulin Genes (eds Honjo, T. & Alt, F.) 345–363 (Academic, San Diego, 1995).

    Book  Google Scholar 

  22. Melamed, D., Benschop, R. J., Cambier, J. C. & Nemazee, D. Developmental regulation of B lymphocyte immune tolerance compartmentalizes clonal selection from receptor selection. Cell 92, 173–182 (1998).

    Article  CAS  Google Scholar 

  23. Hartley, S. B.et al. Elimination of self-reactive B lymphocytes proceeds in two stages: arrested development and cell death. Cell 72, 325–335 (1993).

    Article  CAS  Google Scholar 

  24. Chen, C.et al. The site and stage of anti-DNA B-cell deletion. Nature 373, 252–255 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Nussenzweig, M. C.et al. Ahuman immunoglobulin gene reduces the incidence of lymphomas in c -Myc-bearing transgenic mice. Nature 336, 446–450 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Costa, T. E. F., Suh, H. & Nussenzweig, M. C. Chromosomal position of rearranging gene segments influences allelic exclusion in transgenic mice. Proc. Natl Acad. Sci. USA 89, 2205–2208 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Kitamura, D., Roes, J., Kuhn, R. & Rajcwsky, K. AB-cell deficient mouse by targeted disruption of the membrane exons of the immunoglobulin µ-chain gene. Nature 350, 423–426 (1991).

    Article  ADS  CAS  Google Scholar 

  28. Schatz, D. G., Oettinger, M. A. & Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell 59, 1035–1048 (1989).

    Article  CAS  Google Scholar 

  29. Oettinger, M. A., Schatz, D. G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990).

    Article  ADS  CAS  Google Scholar 

  30. Schlissel, M., Constantinesc, U. A., Morrow, T., Baxter, M. & Peng, A. Double-strand signal sequence breaks in V(D)J recombination are blunt, 5′-phosphorylated, RAG-dependent, and cell cycle regulated. Genes Dev. 7, 2520–2532 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Monroe, C. Seidel and F. Alt for discussing unpublished data; P. Cortes for discussion and anti-RAG2 polyclonal antibodies; N. Heintz and W. Yang for help with BAC technology; and F. Isdell and M. Genova for cell sorting. W.Y. was supported by the NIH, the Surdna Foundation and the William Randolph Hearst Foundation. This work was funded in part by grants from the NIH to M.C.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel C. Nussenzweig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, W., Nagaoka, H., Jankovic, M. et al. Continued RAG expression in late stages of B cell development and no apparent re-induction after immunizion. Nature 400, 682–687 (1999). https://doi.org/10.1038/23287

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23287

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing