Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-LET radiations induce a large proportion of non-rejoining DNA breaks

Abstract

THE mechanisms by which mammalian cells are killed by ionising radiation have not been explained at the molecular level and radiations with a high linear energy transfer (LET) can provide an important tool for investing these mechanisms. High-LET radiations, such as neutrons, π-mesons and low-energy heavy ions are known to kill bacteria1,2, yeast3,4, and mammalian cells in vitro5–9 more efficiently per unit dose than radiations with diffuse patterns of ionization, or low-LETs, such as γ or X rays. Other radiobiological phenomena associated with high-LET radiations are a reduced effect of chemical modifiers, for example, oxygen10, on cellular radiation sensitivity and reduction or loss of cellular ability to recover from radiation damage between split radiation doses5,8. Because of these and other attributes, including the favourable depth–dose distribution of heavy ions and π-mesons, high-LET radiations are being actively considered for use in cancer radiation therapy11,12, and a thorough understanding of their biological effects is necessary for them to be used to advantage clinically. We report here that, over an LET range of 1–1953 KeV µm−1, there is an excellent correlation between the efficiency of exponential (single-hit) cell killing and the induction of non-rejoining DNA strand breaks, as measured on alkaline sucrose gradients. This correlation implies that non-rejoined breaks are a cause of cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Munson, R. J., Neary, G. J., Bridges, B. A. & Preston, R. J. Int. J. radiat. Biol. 13, 205–224 (1967).

    CAS  Google Scholar 

  2. Powers, E. L., Lyman, J. T. & Tobias, C. A. Int. J. radiat. Biol. 14, 313–330 (1968).

    CAS  Google Scholar 

  3. Sayeg, J. A., Birge, A. C., Beam, C. A. & Tobias, C. A. Radiat. Res. 10, 449–461 (1959).

    Article  ADS  CAS  Google Scholar 

  4. Manney, T. R., Brustad, T. & Tobias, C. A. Radiat. Res. 18, 374–388 (1963).

    Article  ADS  Google Scholar 

  5. Barendsen, G. W. Int. J. radiat. Biol. 8, 453–466 (1964).

    CAS  Google Scholar 

  6. Deering, R. A. & Rice, R., Jr Radiat. Res. 17, 774–786 (1962).

    Article  ADS  CAS  Google Scholar 

  7. Skarsgard, L. D., Kihlman, B. A., Parker, L., Pujara, C. M. & Richardson, S. Radiat. Res. Suppl. 7, 208–221 (1967).

    Article  CAS  Google Scholar 

  8. Todd, P. Radiat. Res. Suppl. 7, 196–207 (1967).

    Article  CAS  Google Scholar 

  9. Raju, M. R., Gnanapurani, M. & Richman, C. Br. J. Radiol. 45, 178–181 (1972).

    Article  CAS  Google Scholar 

  10. Barendsen, G. W. in The Initial Effects of Ionizing Radiations on Cells (ed. Harris, R. J. C.) 183–194 (Academic, New York, 1961).

    Google Scholar 

  11. Lawrence, J. & Tobias, C. in Mod. Trends Radiother. 1, 260–276 (1967).

    Google Scholar 

  12. Tobias, C. A. & Todd, P. in National Cancer Institute Monograph 24, Conference on Radiobiology and Radiotherapy, 1–15 (US Department of Health, Education and Welfare, 1967).

    Google Scholar 

  13. Sinclair, W. K. Cancer Res. 27, 297–308 (1967).

    CAS  PubMed  Google Scholar 

  14. Mortimer, R., Brustad, T. & Cormack, D. V. Radiat. Res. 26, 465–482 (1965).

    Article  ADS  CAS  Google Scholar 

  15. Puck, T. Prog. Biophys. biophys. Chem. 10, 237–258 (1960).

    Article  CAS  Google Scholar 

  16. Barendsen, G. W., Walter, H. M. D., Fowler, J. F. & Bewley, D. K. Radiat. Res. 18, 106–119 (1963).

    Article  ADS  CAS  Google Scholar 

  17. Chadwick, K. H. & Leenhouts, H. P. Phys. med. Biol. 18, 78–87 (1973).

    Article  CAS  Google Scholar 

  18. Todd, P. thesis, Univ. California, Berkeley (1964).

  19. Todd, P. W. Radiat. Res. 61, 288–297 (1975).

    Article  ADS  CAS  Google Scholar 

  20. Kapp, D. S. & Smith, K. C. J. Bact. 103, 49–54 (1970).

    CAS  PubMed  Google Scholar 

  21. Painter, R. B., Young, B. R. & Burki, H. J. Proc. natn. Acad. Sci. USA 71, 4836–4838 (1974).

    Article  ADS  CAS  Google Scholar 

  22. Cleaver, J. E., Thomas, G. H. & Burki, H. G. Science 177, 996–998 (1972).

    Article  ADS  CAS  Google Scholar 

  23. Burki, H. J., Roots, R., Feinendegen, L. E. & Bond, V. P. Int. J. radiat. Biol. 24, 363–375 (1973).

    CAS  Google Scholar 

  24. Howard-Flanders, P. Adv. Biol. med. Phys. 6, 553–603 (1958).

    Article  CAS  Google Scholar 

  25. Christensen, R. C., Tobias, C. A. & Taylor, W. D. Int. J. radiat. Biol. 22, 457–477 (1972).

    CAS  Google Scholar 

  26. Cole, A., Shonka, F., Corry, P. & Cooper, W. G. in Molecular Mechanisms for Repair of DNA (eds Hanawalt, P. C. & Setlow, R. B.) 665–676 (Plenum, New York, 1975).

    Book  Google Scholar 

  27. Ehmann, U. K. & Lett, J. T. Radiat. Res. 54, 152–162 (1973).

    Article  ADS  CAS  Google Scholar 

  28. Cleaver, J. E. in Meth. Cancer Res. 11, 123–165 (Academic, New York, 1975).

    Google Scholar 

  29. Dugle, D. L., Gillespie, C. J. & Chapman, J. D. Proc. natn. Acad. Sci. USA 73, 809–812 (1976).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

RITTER, M., CLEAVER, J. & TOBIAS, C. High-LET radiations induce a large proportion of non-rejoining DNA breaks. Nature 266, 653–655 (1977). https://doi.org/10.1038/266653a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/266653a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing