Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid

Abstract

The soil bacterium Agrobacterium tumefaciens is a plant pathogen that causes crown-gall tumours after infection of wounded dicotyledonous plants. Large plasmids (Ti-plasmids) are responsible for the oncogenicity of the bacterium1–3. Crown-gall tumours contain a DNA segment, called the T-DNA, which is homologous with a defined part of the Ti-plasmid present in the tumour-inducing bacterium, and is stably integrated into the plant genome4–7. Apart from the T-DNA another region of the Ti-plasmid-called the vir-region, is essential for tumour induction8–11. We report here the interaction of two compatible plasmids, one containing the vir-region, the other carrying the T-DNA on a wide host-range replicon. An A. tumefaciens strain harbouring both plasmids has a normal tumour-inducing capacity, although neither plasmid is functional alone. With this approach, the T-DNA on one plasmid can, because of its size, be easily genetically manipulated using Escherichia coli as a host. Transfer of this plasmid into an A. tumefaciens strain harbouring the plasmid with the vir-region allows introduction of the manipulated T-DNA into plant cells. In this way, sophisticated binary vector systems for plant genetic engineering can be developed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Van Larebeke, N. et al. Nature 252, 169–170 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Zaenen, I., Van Larebeke, N., Teuchy, H., Van Montagu, M. & Schell, J. J. molec. Biol. 86, 109–127 (1974).

    Article  CAS  PubMed  Google Scholar 

  3. Watson, B., Currier, T. C., Gordon, M. P., Chilton, M. D. & Nester, E. W. J. Bact. 123, 255–264 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chilton, M. D. et al. Cell 11, 263–271 (1977).

    Article  CAS  PubMed  Google Scholar 

  5. Thomashow, M. F., Nutter, R., Montoya, A. L., Gordon, M. P. & Nester, E. W. Cell 19, 729–739 (1980).

    Article  CAS  PubMed  Google Scholar 

  6. De Beuckeleer, M. et al. Molec. gen. Genet. 183, 283–288 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Ooms, G. et al. Cell 30, 589–597 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. Ooms, G., Poulis, J. A. & Schilperoort, R. A. J. Bact. 144, 82–91 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Garfinkel, D. J. & Nester, E. W. J. Bact. 144, 732–743 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. De Greve, H. et al. Plasmid 6, 235–248 (1981).

    Article  CAS  PubMed  Google Scholar 

  11. Hille, J., Klasen, I. & Schilperoort, R. A. Plasmid 7, 107–118 (1982).

    Article  CAS  PubMed  Google Scholar 

  12. Beggs, J. D. Alfred Benson Symp. 16, 383–389 (1981).

    Google Scholar 

  13. Twigg, A. J. & Sheratt, D. Nature 283, 216–218 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Beggs, J. D. Nature 275, 104–109 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Southern, E. J. J. molec. Biol. 98, 503–518 (1975).

    Article  CAS  PubMed  Google Scholar 

  16. Ooms, G., Hooykaas, P.J.J., Moolenaar, G. & Schilperoort, R. A. Gene 14, 33–50 (1981).

    Article  CAS  PubMed  Google Scholar 

  17. Lippincott, B. B. & Lippincott, J. A. J. Bact. 97, 620–628 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hille, J., Van Kan, J., Klasen, I. & Schilperoort, R. A. J. Bact. (in the press).

  19. De Picker, A., De Block, M., Inzé, D., Van Montagu, M. & Schell, J. Gene 10, 329–338 (1980).

    Article  CAS  Google Scholar 

  20. Hooykaas, P. J. J., Den Dulk-Ras, H. & Schilperoort, R. A. Plasmid 4, 64–75 (1980).

    Article  CAS  PubMed  Google Scholar 

  21. Chilton, M. D. et al. Plasmid 1, 254–259 (1978).

    Article  CAS  PubMed  Google Scholar 

  22. De Vos, G., De Beuckeleer, M., Van Montagu, M. & Schell, J. Plasmid 6, 249–253 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. Otten, L. A. B. M. & Schilperoort, R. A. Biochim. biophys. Acta 527, 497–500 (1978).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoekema, A., Hirsch, P., Hooykaas, P. et al. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303, 179–180 (1983). https://doi.org/10.1038/303179a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/303179a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing