Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1

Abstract

Timely deactivation of the α-subunit of the rod G-protein transducin (Gαt) is essential for the temporal resolution of rod vision1. Regulators of G-protein signalling (RGS) proteins accelerate hydrolysis of GTP by the α-subunits of heterotrimeric G proteins2,3,4 in vitro. Several retinal RGS proteins can act in vitro as GTPase accelerating proteins (GAP) for Gαt5,6,7,8. Recent reconstitution experiments indicate that one of these, RGS9-1, may account for much of the Gαt GAP activity in rod outer segments (ROS)8,9. Here we report that ROS membranes from mice lacking RGS9-1 hydrolyse GTP more slowly than ROS membranes from control mice. The Gβ5-L protein that forms a complex with RGS9-1 (ref. 10) was absent from RGS9-/- retinas, although Gβ5-L messenger RNA was still present. The flash responses of RGS9-/- rods rose normally, but recovered much more slowly than normal. We conclude that RGS9-1, probably in a complex with Gβ5-L, is essential for acceleration of hydrolysis of GTP by Gαt and for normal recovery of the photoresponse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inactivation of the RGS9 gene results in the loss of RGS9-1 and Gβ5-L in the retina and a reduced rate of hydrolysis of GTP by transducin.
Figure 2: Slow recovery of the photoresponse in the absence of RGS9-1 and Gβ5-L.
Figure 3: Dependence of recovery on flash strength.
Figure 4: Simulated flash responses of rods.

Similar content being viewed by others

References

  1. Arshavsky, V. Y. & Pugh, E. N. Lifetime regulation of G protein–effector complex: emerging importance of RGS proteins. Neuron 20, 11–14 (1998).

    Article  CAS  Google Scholar 

  2. Berman, D. M. & Gilman, A. G. Mammalian RGS proteins: barbarians at the gate. J. Biol. Chem. 273, 1269–1272 (1998).

    Article  CAS  Google Scholar 

  3. Wieland, T. & Chen, C.-K. Regulator of G-protein signaling: a novel protein family involved in timely deactivation and desensitization of signaling via heterotrimeric G-proteins. Naunyn-Schmiedeberg's Arch. Pharmacol. 360, 14–20 (1999).

    Article  CAS  Google Scholar 

  4. De Vries, L. & Farquhar, M. G. RGS proteins: more than just GAPs for heterotrimeric G proteins. Trends Cell Biol. 9, 138–144 (1999).

    Article  CAS  Google Scholar 

  5. Nekrasova, E. R. et al. Activation of transducin guanosine triphosphatase by two proteins of the RGS family. Biochemistry 36, 7638–7643 (1997).

    Article  CAS  Google Scholar 

  6. Chen, C.-K., Wieland, T. & Simon, M. I. RGS-r, a retinal specific RGS protein, binds an intermediate conformation of transducin and enhances recycling. Proc. Natl Acad. Sci. USA 93, 12885–12889 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Faurobert, E. & Hurley, J. B. The core domain of a new retina specific RGS protein stimulates the GTPase activity of transducin in vitro. Proc. Natl Acad. Sci. USA 94, 2945–2950 (1997).

    Article  ADS  CAS  Google Scholar 

  8. He, W., Cowan, C. W. & Wensel, T. G. RGS9, a GTPase accelerator for phototransduction. Neuron 20, 95–102 (1998).

    Article  Google Scholar 

  9. Cowan, C. W., Fariss, R. N., Sokal, I., Palczewski, K. & Wensel, T. G. High expression levels in cones of RGS9, the predominant GTPase accelerating protein of rods. Proc. Natl Acad. Sci. USA 95, 5351–5356 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Makino, E. R., Handy, J. W., Li, T. & Arshavsky, V. Y. The GTPase activating factor for transducin in rod photoreceptors is the complex between RGS9 and type 5 G protein β subunit. Proc. Natl Acad. Sci. USA 96, 1947–1952 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Watson, A. J., Katz, A. & Simon, M. I. A fifth member of the mammalian G-protein β-subunit family. Expression in brain and activation of the β 2 isotype of phospholipase C. J. Biol. Chem. 269, 22150–22156 (1994).

    CAS  PubMed  Google Scholar 

  12. Watson, A. J., Aragay, A. M., Slepak, V. Z. & Simon, M. I. A novel form of the G protein β subunit Gβ5 is specifically expressed in the vertebrate retina. J. Biol. Chem. 271, 28154–28160 (1996).

    Article  CAS  Google Scholar 

  13. Cabrera, J. L., de Freitas, F., Satpaev, D. K. & Slepak, V. Z. Identification of the Gβ5–RGS7 protein complex in the retina. Biochem. Biophys. Res. Commun. 249, 898–902 (1998).

    Article  CAS  Google Scholar 

  14. Snow, B. E. et al. A G protein γ subunit-like domain shared between RGS11 and other RGS proteins specifies binding to Gβ5 subunits. Proc. Natl Acad. Sci. USA 95, 13307–13312 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Levay, K., Cabrera, J. L., Satpaev, D. K. & Slepak, V. Z. Gβ5 prevents the RGS7-Gαo interaction through binding to a distinct Gγ-like domain found in RGS7 and other RGS proteins. Proc. Natl Acad. Sci. USA 96, 2503–2507 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Arshavsky, V. Y. & Bownds, M. D. Regulation of deactivation of photoreceptor G protein by its target enzyme and cGMP. Nature 357, 416–417 (1992).

    Article  ADS  Google Scholar 

  17. Pages, F., Deterre, P. & Pfister, C. Enhanced GTPase activity of transducing when bound to cGMP phosphodiesterase in bovine retinal rods. J. Biol. Chem. 267, 22018–22021 (1992).

    CAS  PubMed  Google Scholar 

  18. Tsang, S. H. et al. Role for the target enzyme is deactivation of photoreceptor G protein in vivo. Science 282, 117–121 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Baylor, D. A., Lamb, T. D. & Yau, K. W. Responses of retinal rods to single photons. J. Physiol. (Lond.) 288, 613–634 (1979).

    CAS  Google Scholar 

  20. Chen, C.-K. et al. Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. Proc. Natl Acad. Sci. USA 96, 3718–3722 (1999).

    Article  ADS  CAS  Google Scholar 

  21. Lamb, T. D. & Pugh, E. N. A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J. Physiol. 449, 719–758 (1992).

    Article  CAS  Google Scholar 

  22. Xu, J. et al. Prolonged photoresponses in transgenic mouse rods lacking arrestin. Nature 389, 505–509 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Sagoo, M. S. & Lagnado, L. G-protein deactivation is rate-limiting for shut-off of the phototransduction cascade. Nature 389, 392–395 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Pepperberg, D. R. et al. Light-dependent delay in the falling phase of the retinal rod photoresponse. Vis. Neurosci. 8, 9–18 (1992).

    Article  CAS  Google Scholar 

  25. Lyubarsky, A L. & Pugh, E. N. Recovery phase of the murine rod photoresponse reconstructed from electroretinographic recordings. J. Neurosci. 16, 563–571 (1996).

    Article  CAS  Google Scholar 

  26. Ramirez-Solis, R., Davis, A. C. & Bradley, A. in Methods in Enzymology: Guide to Techniques in Mouse Development (eds Wassarman, P. M. & DePamphilis, M. L.) 855–878 (Academic, San Diego, 1993).

    Book  Google Scholar 

  27. Cowan, C. W., Wensel, T. G. & Arshavsky, V. Y. in Methods in Enzymology: Vertebrate Phototransduction and the Visual Cycle (ed. Palczewski, K.) 524–538 (Academic, San Diego, 2000).

    Book  Google Scholar 

  28. Wieland, T., Chen, C.-K. & Simon, M. I. The retinal specific protein RGS-r competes with the γ subunit of cGMP phosphodiesterase for the α subunit of transducin and facilitates signal termination. J. Biol. chem. 272, 8853–8856 (1997).

    Article  CAS  Google Scholar 

  29. Rieke, F. & Baylor, D. A. Single-photon detection by rod cells of the retina. Rev. Mod. Phys. 70, 1027–1036 (1998).

    Article  ADS  CAS  Google Scholar 

  30. Makino, C. L., Flannery, J. G., Chen, J. & Dodd, R. L. in Photostasis and Related Phenomenon (eds Williams, T. P. & Thistle, A. B.) 129–151 (Plenum, New York, 1998).

    Book  Google Scholar 

Download references

Acknowledgements

We thank members of the Caltech Transgenic Core Facility for their technical support, and R. Lefkowitz, J. Hurley and H. Jurgen-Fuller for antibodies. This work was supported by grants from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melvin I. Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CK., Burns, M., He, W. et al. Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1. Nature 403, 557–560 (2000). https://doi.org/10.1038/35000601

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35000601

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing