Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins

Abstract

Interferon-γ is an immunomodulatory substance that induces the expression of many genes to orchestrate a cellular response and establish the antiviral state of the cell. Among the most abundant antiviral proteins induced by interferon-γ are guanylate-binding proteins such as GBP1 and GBP2 (refs 1, 2). These are large GTP-binding proteins of relative molecular mass 67,000 with a high-turnover GTPase activity3 and an antiviral effect4. Here we have determined the crystal structure of full-length human GBP1 to 1.8 Å resolution. The amino-terminal 278 residues constitute a modified G domain with a number of insertions compared to the canonical Ras structure, and the carboxy-terminal part is an extended helical domain with unique features. From the structure and biochemical experiments reported here, GBP1 appears to belong to the group of large GTP-binding proteins that includes Mx and dynamin, the common property of which is the ability to undergo oligomerization with a high concentration-dependent GTPase activity5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Primary, secondary and tertiary structure of hGBP1.
Figure 2: Comparison of hGBP1 and Ras structures.
Figure 3: Interaction of the C-terminal helix motif α12/13 with the helical and the LG domains.
Figure 4: Cooperative GTP hydrolysis and nucleotide-dependent multimerization of hGBP1.

Similar content being viewed by others

References

  1. Cheng, Y.-S. E., Colonno, R. J. & Yin, F. H. Interferon induction of fibroblast proteins with guanylate binding activity J. Biol. Chem. 258, 7746–7750 (1983).

    CAS  PubMed  Google Scholar 

  2. Cheng, Y.-S. E., Patterson, C. E. & Staeheli, P. Interferon-induced guanylate-binding proteins lack an N(T)KXD consensus motif and bind GMP in addition to GDP and GTP Mol. Cell. Biol. 11, 4717–4725 (1991).

    Article  CAS  Google Scholar 

  3. Schwemmle, M. & Staeheli, P. The interferon-induced 67-kDa guanylate-binding protein (hGBP1) is a GTPase that converts GTP to GMP J. Biol. Chem. 269, 11299–11305 (1994).

    CAS  PubMed  Google Scholar 

  4. Anderson, S. L., Carton, J. M., Lou, J., Xing, L. & Rubin, B. Y. Interferon-induced guanylate-binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditis virus Virology 256, 8–14 (1999).

    Article  CAS  Google Scholar 

  5. van der Bliek, A. M. Functional diversity in the dynamin family Trends Cell Biol. 9, 96–102 (1999).

    Article  CAS  Google Scholar 

  6. Boehm, U. et al. Two families of GTPases dominate the complex cellular response to IFN-γ J. Immunol. 161, 6715–6723 (1998).

    CAS  PubMed  Google Scholar 

  7. Staeheli, P., Pitossi, F. & Pavlovic, J. Mx proteins: GTPases with antiviral activity Trends Cell Biol. 3, 268–272 (1993).

    Article  CAS  Google Scholar 

  8. Praefcke, G. J. K., Geyer, M., Schwemmle, M., Kalbitzer, H. R. & Herrmann, C. Nucleotide-binding characteristics of human guanylate-binding protein 1 and identification of the third canonical GTP-binding motif J. Mol. Biol. 292, 321–332 (1999)

    Article  CAS  Google Scholar 

  9. Weijland, A. & Parmeggiani, A. Towards a model for the interaction between elongation factor Tu and the ribosome Science 259, 1311–1314 (1993)

    Article  ADS  CAS  Google Scholar 

  10. Saraste, M., Sibbald, P. R. & Wittinghofer, A. The P-loop—a common motif in ATP- and GTP-binding proteins Trends. Biochem. Sci. 15, 430–434 (1990).

    Article  Google Scholar 

  11. Boriack-Sjodin, P. A., Margarit, S. M., Barsagi, D. & Kuriyan, J. The structural basis of the activation of Ras by Sos Nature 394, 337–343 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Scheffzek, K., Ahmadian, M. R. & Wittinghofer, A. GTPase activating proteins: helping hands to complement an active site Trends Biochem. Sci. 23, 257–262 (1998).

    Article  CAS  Google Scholar 

  13. Warnock, D. E., Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembly stimulates its GTPase activity J. Biol. Chem. 271, 22310–22314 (1996)

    Article  CAS  Google Scholar 

  14. Sever, S., Muhlberg, A. B. & Schmid, S. L. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature 398, 481–486 (1999).

    Article  ADS  CAS  Google Scholar 

  15. Stowell, M. H. B., Marks, B., Wigge, P. & McMahon, H. T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring Nature Cell Biol. 1, 27–32 (1999).

    Article  CAS  Google Scholar 

  16. Schwemmle, M., Richter, M. F., Herrmann, C., Nassar, N. & Staeheli, P. Unexpected structural requirements for GTPase activity of the interferon-induced MxA protein J. Biol. Chem. 270, 13518–13523 (1995).

    Article  CAS  Google Scholar 

  17. Schumacher, B. & Staeheli, P. Domains mediating intramolecular folding and oligomerization of MxA GTPase J. Biol. Chem. 273, 28365–28370 (1998).

    Article  CAS  Google Scholar 

  18. Smirnova, E., Shurland, D-L., Newman-Smith, E. D., Pishvaee, B. & van der Bliek, A. M. A model for dynamin self–assembly based on binding between three different protein domains J. Biol. Chem. 274, 14942–14947 (1999)

    Article  CAS  Google Scholar 

  19. Okamoto, P. M., Tripet, B., Litowski, J., Hodges, R. S. & Vallee, R. B. Multiple distinct coiled-coils are involved in dynamin self-assembly J. Biol. Chem. 274, 10277–10286 (1999).

    Article  CAS  Google Scholar 

  20. Collaborative Computational project, N.4. The CCP4 suite: programs for protein crystallography Acta Crystallogr. D 50, 760–763 (1994).

    Google Scholar 

  21. Kochs, G. & Haller, O. GTP-bound Human MxA protein interacts with the nucleocapsids of Thogoto virus (Orthomyxoviridae) J. Biol. Chem. 274, 4370–4376 (1999)

    Article  CAS  Google Scholar 

  22. Terwilliger, T. C. & Berendzen, J. Correlated phasing of multiple isomorphous replacement data Acta Crystallogr. D 52, 749–757 (1996).

    CAS  Google Scholar 

  23. Perrakis, A., Sixma, T. K., Wilson, K. S. & Lamzin, V. S. wARP:improvement and extension of crystallographic phases by weighted averaging of multiple refined dummy atomic models Acta Crystallogr. D 53, 448–455 (1997).

    CAS  Google Scholar 

  24. Jones, T. A. & Kjeldgaard, M. Electron-density map interpretation Methods Enzymol. 277, 173–208 (1997).

    Article  CAS  Google Scholar 

  25. Brunger, A. T. et al. Crystallography and NMR system: a new software system for macromolecular structure determination Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  26. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  27. Merrit, E. A. & Murphy, M. E. P. Raster3D version 2.0. A program for photorealistic molecular graphics Acta Crystallogr. D 50, 869–873 (1994).

    Article  Google Scholar 

  28. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons Proteins 11, 281–296 (1991)

    Article  CAS  Google Scholar 

  29. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features Biopolymers 22, 2577–2637 (1983)

    Article  CAS  Google Scholar 

  30. Pai, E. F. et al. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35Å resolution: implications for the mechanism of GTP hydrolysis EMBO J. 9, 2351–2359 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Deutsche Forschungsgemeinschaft (C.H.) and by Boehringer Ingelheim Fonds (G.J.K.P). We thank the staff at beamlines BW6, DESY, Hamburg and at BM-14, ESRF, Grenoble for help with data collection. We also thank I. Schlichting, I. Vetter and R. Hillig for discussions and M. Hess for help with figures. A. Beste for help with HPLC and R. Schebaum for secretarial assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prakash, B., Praefcke, G., Renault, L. et al. Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature 403, 567–571 (2000). https://doi.org/10.1038/35000617

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35000617

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing