Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interferon-γ elicits arteriosclerosis in the absence of leukocytes

Abstract

Atherosclerosis and post-transplant graft arteriosclerosis are both characterized by expansion of the arterial intima as a result of the infiltration of mononuclear leukocytes, the proliferation of vascular smooth muscle cells (VSMCs) and the accumulation of extracellular matrix1,2,3. They are also associated with the presence of the immunomodulatory cytokine interferon-γ (IFN-γ)2,3. Moreover, in mouse models of atheroma formation or allogeneic transplantation, the serological neutralization4 or genetic absence5,6,7,8 of IFN-γ markedly reduces the extent of intimal expansion. However, other studies have found that exogenous IFN-γ inhibits cultured VSMC proliferation9,10,11,12,13,14 and matrix synthesis15, and reduces intimal expansion in response to mechanical injury16,17,18. This discrepancy is generally explained by the idea that IFN-γ either directly activates macrophages, or, by increasing antigen presentation, indirectly activates T cells within the lesions of atherosclerosis and graft arteriosclerosis. These activated leukocytes are thought to express the VSMC-activating cytokines1,2,3 and cell-surface molecules19 that cause the observed arteriosclerotic responses. Here we have inserted pig and human arteries into the aorta of immunodeficient mice, and we show that IFN-γ can induce arteriosclerotic changes in the absence of detectable immunocytes by acting on VSMCs to potentiate growth-factor-induced mitogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IFN-γ elicited arteriosclerosis in vivo.
Figure 2: IFN-γ sustained endothelial MHC antigen expression and resulted in an accumulation of intimal VSMCs in the absence of leukocytes.
Figure 3: IFN-γ increased the intima area and number of intimal nuclei.
Figure 4: IFN-γ increased VSMC proliferation and expression of PDGF and its receptor.
Figure 5: IFN-γ was not a direct mitogen, but potentiated PDGF-induced proliferation and upregulated PDGF receptor expression in vitro.

Similar content being viewed by others

References

  1. Ross, R. Atherosclerosis—an inflamatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  Google Scholar 

  2. Hansson, G. K., Jonasson, L., Seifert, P. S. & Stemme, S. Immune mechanisms in atherosclerosis. Arteriosclerosis 9, 567–578 (1989).

    Article  CAS  Google Scholar 

  3. Libby, P., Salomon, R. N., Payne, D. D., Schoen, F. J. & Pober, J. S. Functions of vascular wall cells related to development of transplantation-associated coronary arteriosclerosis. Transplant. Proc. 21, 3677–3684 (1989).

    CAS  PubMed  Google Scholar 

  4. Russell, P. S., Chase, C. M., Winn, H. J. & Colvin, R. B. Coronary atherosclerosis in transplanted mouse hearts. III. Effects of recipient treatment with a monoclonal antibody to interferon-γ. Transplantation 57, 1367–1371 (1994).

    Article  CAS  Google Scholar 

  5. Gupta, S. et al. IFN-γ potentiates atherosclerosis in ApoE knock-out mice. J. Clin. Invest. 99, 2752–2761 (1997).

    Article  CAS  Google Scholar 

  6. Nagano, H. et al. Interferon-γ deficiency prevents coronary arteriosclerosis but not myocardial rejection in transplanted mouse hearts. J. Clin. Invest. 100, 550–557 (1997).

    Article  CAS  Google Scholar 

  7. Räisänen-Sokolowski, A., Glysing-Jensen, T., Koglin, J. & Russell, M. E. Reduced transplant arteriosclerosis in murine cardiac allografts placed in interferon-γ knockout recipients. Am. J. Pathol. 152, 359–365 (1998).

    PubMed  PubMed Central  Google Scholar 

  8. Nagano, H. et al. Coronary arteriosclerosis after T-cell-mediated injury in transplanted mouse hearts. Role of interferon-γ. Am. J. Pathol. 152, 1187–1197 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hansson, G. K., Jonasson, L., Holm, J., Clowes, M. M. & Clowes, A. W. γ-Interferon regulates vascular smooth muscle proliferation and Ia antigen expression in vivo and in vitro. Circ. Res. 63, 712–719 (1988).

    Article  CAS  Google Scholar 

  10. Warner, S. J. C., Friedman, G. B. & Libby, P. Immune interferon inhibits proliferation and induces 2′-5′-oligoadenylate synthetase gene expression in human vascular smooth muscle cells. J. Clin. Invest. 83, 1174–1182 (1989).

    Article  CAS  Google Scholar 

  11. Hansson, G. K., Hellstrand, M., Rymo, L., Rubbia, L. & Gabbiani, G. Interferon γ inhibits both proliferation and expression of differentiation-specific α-smooth muscle actin in arterial smooth muscle cells. J. Exp. Med. 170, 1595–1608 (1989).

    Article  CAS  Google Scholar 

  12. Shimokado, K. & Numano, F. Inhibition of human vascular smooth muscle cell proliferation by interferon gamma. Ann. N. Y. Acad. Sci. 598, 544–545 (1990).

    Article  ADS  Google Scholar 

  13. Nunokawa, Y. & Tanaka, S. Interferon-γ inhibits proliferation of rat vascular smooth muscle cells by nitric oxide generation. Biochem. Biophys. Res. Commun. 188, 409–415 (1992).

    Article  CAS  Google Scholar 

  14. Bennett, M. R., Evan, G. I. & Newby, A. C. Deregulated expression of the c-myc oncogene abolishes inhibition of proliferation of rat vascular smooth muscle cells by serum reduction, interferon-γ, heparin, and cyclic nucleotide analogues and induces apoptosis. Circ. Res. 74, 525–536 (1994).

    Article  CAS  Google Scholar 

  15. Amento, E. P., Ehsani, N., Palmer, H. & Libby, P. Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler. Thromb. 11, 1223–1230 (1991).

    Article  CAS  Google Scholar 

  16. Hansson, G. K. & Holm, J. Interferon-γ inhibits arterial stenosis after injury. Circulation 84, 1266–1272 (1991).

    Article  CAS  Google Scholar 

  17. Hansson, G. K. et al. T lymphocytes inhibit the vascular response to injury. Proc. Natl Acad. Sci. USA 88, 10530–10534 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Castronuovo, J. J. et al. Cytokine therapy for arterial restenosis: inhibition of neointimal hyperplasia by gamma-interferon. Cardiovasc. Surg. 3, 463–468 (1995).

    Article  Google Scholar 

  19. Mach, F., Schönbeck, U., Sukhova, G. K., Atkinson, E. & Libby, P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 394, 200–203 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Sultan, P. et al. Pig but not human interferon-γ initiates human cell-mediated rejection of pig tissue in vivo. Proc. Natl Acad. Sci. USA 94, 8767–8772 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Groenewegen, G., Buurman, W. A. & van der Linden, C. J. Lymphokine dependence of in vivo expression of MHC class II antigens by endothelium. Nature 316, 361–363 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Goes, N., Urmson, J., Hobart, M. & Halloran, P. F. The unique role of interferon-γ in the regulation of MHC expression on arterial endothelium. Transplantation 62, 1889–1894 (1996).

    Article  CAS  Google Scholar 

  23. Suzuki, H. et al. Interferon-γ modulates messenger RNA levels of c-sis (PDGF-B chain), PDGF-A chain, and IL-1β genes in human vascular endothelial cells. Am. J. Pathol. 134, 35–43 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yokota, T. et al. Mitogenic activity of interferon gamma on growth-arrested human vascular smooth muscle cells. Arterioscler. Thromb. 12, 1393–1401 (1992).

    Article  CAS  Google Scholar 

  25. Mensink, A. et al. Modulation of intercellular communication between smooth muscle cells by growth factors and cytokines. Eur. J. Pharmacol. 310, 73–81 (1996).

    Article  CAS  Google Scholar 

  26. Brinckerhoff, C. E. & Guyre, P. M. Increased proliferation of human synovial fibroblasts treated with recombinant immune interferon. J. Immunol. 134, 3142–3146 (1985).

    CAS  PubMed  Google Scholar 

  27. Hunninghake, G. W., Hemken, C., Brady, M. & Monick, M. Immune interferon is a growth factor for human lung fibroblasts. Am. Rev. Respir. Dis. 134, 1025–1028 (1986).

    Article  CAS  Google Scholar 

  28. Yong, V. W. et al. γ-Interferon promotes proliferation of adult human astrocytes in vitro and reactive gliosis in the adult mouse brain in vivo. Proc. Natl Acad. Sci. USA 88, 7016–7020 (1991).

    Article  ADS  CAS  Google Scholar 

  29. Marra, F., Choudhury, G. G. & Abboud, H. E. Interferon-γ-mediated activation of STAT1α regulates growth factor-induced mitogenesis. J. Clin. Invest. 98, 1218–1230 (1996).

    Article  CAS  Google Scholar 

  30. Lorber, M. I. et al. Human allogeneic vascular rejection after arterial transplantation and peripheral lymphoid reconstitution in severe combined immunodeficient mice. Transplantation 67, 897–903 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the American Heart Association (G.T.) and the NIH (J.S.P.). R.W.K. received a fellowship award for the Thoracic Surgery Foundation for Research and Education, and J.S.S. was supported by a career development award from the Dermatology Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Tellides.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tellides, G., Tereb, D., Kirkiles-Smith, N. et al. Interferon-γ elicits arteriosclerosis in the absence of leukocytes. Nature 403, 207–211 (2000). https://doi.org/10.1038/35003221

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35003221

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing