Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The 3.2-Å crystal structure of the human IgG1 Fc fragment–FcγRIII complex

Abstract

The immune response depends on the binding of opsonized antigens to cellular Fc receptors and the subsequent initiation of various cellular effector functions of the immune system. Here we describe the crystal structures of a soluble Fcγ receptor (sFcγRIII, CD16), an Fc fragment from human IgG1 (hFc1) and their complex. In the 1:1 complex the receptor binds to the two halves of the Fc fragment in contact with residues of the Cγ2 domains and the hinge region. Upon complex formation the angle between the two sFcγRIII domains increases significantly and the Fc fragment opens asymmetrically. The high degree of amino acid conservation between sFCγRIII and other Fc receptors, and similarly between hFc1 and related immunoglobulins, suggest similar structures and modes of association. Thus the described structure is a model for immune complex recognition and helps to explain the vastly differing affinities of other FcγR–IgG complexes and the FcεRIα–IgE complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The overall structure of the sFcγRIII–hFc1 complex.
Figure 2: Superposition of the complexed components with the free structures (Cα trace).
Figure 3: Structure based sequence alignment of the complex components.
Figure 4: The binding site.
Figure 5: Omit map of the hinge region.

Similar content being viewed by others

References

  1. Huber, R., Deisenhofer, J., Colman, P. M., Matsushima, M. & Palm, W. Crystallographic structure studies of an IgG molecule and an Fc fragment. Nature 264, 415–420 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Metzger, H . Transmembrane signaling: the joy of aggregation. J. Immunol. 149, 1477–1487 (1992).

    CAS  PubMed  Google Scholar 

  3. Isakov, N. ITIMs and ITAMs. The Yin and Yang of antigen and Fc receptor-linked signaling machinery. Immunol. Res. 16, 85– 100 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Gessner, J. E., Heiken, H., Tamm, A. & Schmidt, R. E. The IgG Fc receptor family. Ann. Hematol. 76, 231– 248 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Galon, J. et al. Soluble Fcγ receptors: interaction with ligands and biological consequences. Int. Rev. Immunol. 16, 87– 111 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Deisenhofer, J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8Å resolution. Biochemistry 20, 2361–2370 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Sauer-Eriksson, A. E., Kleywegt, G. J., Uhlen, M. & Jones, T. A. Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure 3, 265–278 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Burmeister, W. P., Huber, A. H. & Bjorkman, P. J. Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature 372, 379– 383 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Duncan, A. R., Woof, J. M., Partridge, L. J., Burton, D. R. & Winter, G. Localization of the binding site for the human high-affinity Fc receptor on IgG. Nature 332, 563–564 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Chappel, M. S. et al. Identification of the Fcγ receptor class I binding site in human IgG through the use of recombinant IgG1/IgG2 hybrid and point-mutated antibodies. Proc. Natl Acad. Sci. USA. 88, 9036–9040 (1991).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lund, J. et al. Multiple binding sites on the CH2 domain of IgG for mouse Fcγ R11. Mol. Immunol. 29, 53– 59 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Greenwood, J., Clark, M. & Waldmann, H. Structural motifs involved in human IgG antibody effector functions. Eur. J. Immunol. 23, 1098– 1104 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Diamond, B., Boccumini, L. & Birshtein, B. K. Site of binding of IgG2b and IgG2a by mouse macrophage Fc receptors by using cyanogen bromide fragments. J. Immunol. 134, 1080–1083 (1985).

    CAS  PubMed  Google Scholar 

  14. Gergely, J. & Sarmay, G. The two binding-site models of human IgG binding Fcγ receptors. FASEB J. 4, 3275–3283 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Sondermann, P., Huber, R. & Jacob, U. Crystal structure of the soluble form of the human Fcγ-receptor IIb: a new member of the immunoglobulin superfamily at 1.7 Å resolution. EMBO J. 18, 1095–1103 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jefferis, R., Lund, J. & Pound, J. D. IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation. Immunol. Rev. 163, 59–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Woof, J. M., Partridge, L. J., Jefferis, R. & Burton, D. R. Localisation of the monocyte-binding region on human immunoglobulin G. Mol. Immunol. 23, 319–330 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Maxwell, K. F. et al. Crystal structure of the human leukocyte Fc receptor, FcγRIIa. Nature Struct. Biol. 6, 437– 442 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Garman, S. C., Kinet, J. -P. & Jardetzky, T. S. Crystal structure of the human high-affinity IgE receptor. Cell 95, 951– 961 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Tamm, A. & Schmidt, R. E. IgG binding sites on human Fcγ receptors. Int. Rev. Immunol. 16, 57– 85 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Sarmay, G., Lund, J., Rozsnyay, Z., Gergely, J. & Jefferis, R. Mapping and comparison of the interaction sites on the Fc region of IgG responsible for triggering antibody dependent cellular cytotoxicity (ADCC) through different types of human Fcγ receptor. Mol. Immunol. 29, 633–639 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  22. Sondermann, P., Jacob, U., Kutscher, C. & Frey, J. Characterization and crystallization of soluble human Fcγ receptor II (CD32) isoforms produced in insect cells. Biochemistry 38, 8469–8477 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Ghirlando, R. et al. Stoichiometry and thermodynamics of the interaction between the Fc fragment of human IgG1 and its low-affinity receptor FcγRIII. Biochemistry 34, 13320– 13327 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Edberg, J. C. & Kimberly, R. P. Cell type-specific glycoforms of FcγRIIIa (CD16): differential ligand binding. J. Immunol. 159, 3849–3857 ( 1997).

    CAS  PubMed  Google Scholar 

  25. Ishizaka, T. & Ishizaka, K. Triggering from histamine from rat mast cells by divalent antibodies against IgE receptor. J. Immunol. 120, 800–806 ( 1978).

    CAS  PubMed  Google Scholar 

  26. Hulett, M. D., Witort, E., Brinkworth, R. I., McKenzie, I. F. C. & Hogarth, P. M. Multiple regions of human FcγRII (CD32) contribute to the binding of IgG. J. Biol. Chem. 270, 21188–21194 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Cook, J. P. et al. Identification of contact residues in the IgE binding site of human FcεRIα. Biochemistry 36, 15579–15588 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Hulett, M. D., Brinkworth, R. I., McKenzie, I. F. & Hogarth, P. M. Fine structure analysis of interaction of FcεRI with IgE. J. Biol. Chem. 274, 13345–13352 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Kato, K. et al. Structural basis of the interaction between IgG and Fcγ Receptors. J. Mol. Biol. 295, 213– 224 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Tax, W. J. M., Willems, H. W., Reekers, P. P. M., Capel, P. J. A. & Koene, R. A. P. Polymorphism in mitogenic effect of IgG1 monoclonal antibodies against T3 antigen on human T cells. Nature 304, 445– 447 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Warmerdam, P. A. M., van de Winkel, J. G. J., Vlug, A., Westerdaal, N. A. C., Capel, P. J. A. A single amino acid in the second Ig-like domain of the human Fcγ receptor II is critical for human IgG2 binding. J. Immunol. 147, 1338– 1343 (1991).

    CAS  PubMed  Google Scholar 

  32. Hulett, M. D. & Hogarth, P. M. The second and third extracellular domains of FcγRI (CD64) confer the unique high affinity binding of IgG2a. Mol. Immunol. 35, 989– 996 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Sutton, B. J. & Gould, H. J. The human IgE network. Nature 366, 421–428 ( 1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Keown, M. B., Henry, A. J., Ghirlando, R., Sutton, B. J. & Gould, H. J. Thermodynamics of the interaction of human immunoglobulin E with its high-affinity receptor FcεRI. Biochemistry 37, 8863–8869 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Henry, A. J. et al. Participation of the N-terminal region of Cε3 in the binding of human IgE to its high-affinity receptor FcεRI. Biochemistry 36,15568–15578 (1997).

  36. Clynes, R., Dumitru, C. & Ravetch, J. V. Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 279 , 1052–1054 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Clynes, R. A., Towers, T. L., Presta, L. G. & Ravetch, J. V. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nature Med. 6, 443–446 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Woodle, E. S. et al. Phase I trial of a humanized, Fc receptor nonbinding OKT3 antibody, huOKT3γ1(Ala–Ala) in the treatment of acute renal allograft rejection. Transplantation 68, 608–616 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Reddy, M. P. et al. Elimination of Fc receptor-dependent effector functions of a modified IgG4 monoclonal antibody to human CD4. J. Immunol. 164,1925–1933 (2000).

  40. Curnow, R. T. Clinical experience with CD64-directed immunotherapy. an overview. Cancer. Immunol. Immunother. 45, 210– 215 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Sondermann, P. & Jacob, U. Human Fcγ receptor IIb expressed in Escherichia coli reveals IgG binding capability. Biol. Chem. 380, 717–721 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Rutishauser, U. et al. The covalent structure of a human gamma G-immunoglobulin. 8. amino acid sequence of heavy-chain cyanogen bromide fragments H5-H7. Biochemistry 9, 3171–3181 (1970).

    Article  CAS  PubMed  Google Scholar 

  43. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760– 763 (1994).

    Google Scholar 

  44. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 ( 1994).

    Article  Google Scholar 

  45. Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 ( 1998).

    Article  CAS  Google Scholar 

  46. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946 –950 (1991).

    Article  Google Scholar 

  47. Merritt, E. A. & Murphy, M. E. P. Raster3D Version 2. 0. a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869– 873 (1994).

    CAS  Google Scholar 

  48. Barton, G. C. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 6, 37–40 ( 1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. E. Schmidt and T. Witte and the unknown myeloma patient for providing us with the monoclonal hIgG1, G. P. Bourenkov and H. D. Bartunik, MPG-ASMB DESY/Hamburg, for help with the diffraction measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Sondermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sondermann, P., Huber, R., Oosthuizen, V. et al. The 3.2-Å crystal structure of the human IgG1 Fc fragment–FcγRIII complex. Nature 406, 267–273 (2000). https://doi.org/10.1038/35018508

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35018508

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing