Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Glycosyltransferase activity of Fringe modulates Notch–Delta interactions

An Erratum to this article was published on 05 October 2000

Abstract

Ligands that are capable of activating Notch family receptors are broadly expressed in animal development, but their activity is tightly regulated to allow formation of tissue boundaries1. Members of the fringe gene family have been implicated in limiting Notch activation during boundary formation2,3,4,5,6,7,8, but the mechanism of Fringe function has not been determined. Here we present evidence that Fringe acts in the Golgi as a glycosyltransferase enzyme that modifies the epidermal growth factor (EGF) modules of Notch and alters the ability of Notch to bind its ligand Delta. Fringe catalyses the addition of N-acetylglucosamine to fucose, which is consistent with a role in the elongation of O-linked fucose O-glycosylation that is associated with EGF repeats. We suggest that cell-type-specific modification of glycosylation may provide a general mechanism to regulate ligand–receptor interactions in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fringe increases binding of Delta to Notch.
Figure 2: Golgi-tethered Fringe increases binding of Delta to Notch.
Figure 3: Fringe has glycosyltransferase activity.
Figure 4: Secreted Notch produced by Fringe–GT-expressing cells binds Delta-expressing cells.
Figure 5: Glycosylation of Notch by Fringe in vitro.

Similar content being viewed by others

References

  1. Irvine, K. D. Fringe, Notch, and making developmental boundaries. Curr. Opin. Genet. Dev. 9, 434–441 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  2. Panin, V. M., Papayannopoulos, V., Wilson, R. & Irvine, K. D. Fringe modulates Notch–ligand interactions. Nature 387, 908–913 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Johnston, S. H. et al. A family of mammalian Fringe genes implicated in boundary determination and the Notch pathway. Development 124 , 2245–2254 (1997).

    CAS  PubMed  Google Scholar 

  4. Fleming, R. J., Gu, Y. & Hukriede, N. A. Serrate-mediated activation of Notch is specifically blocked by the product of the gene fringe in the dorsal compartment of the Drosophila wing imaginal disc. Development 124, 2973–2981 (1997).

    CAS  PubMed  Google Scholar 

  5. Rodriguez-Esteban, C. et al. Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature 386, 360–366 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Laufer, E. et al. Expression of Radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature 386, 366–373 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Zhang, N. & Gridley, T. Defects in somite formation in lunatic fringe-deficient mice. Nature 394, 374– 377 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Evrard, Y. A., Lun, Y., Aulehla, A., Gan, L. & Johnson, R. L. lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 394, 377– 381 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Rulifson, E. J. & Blair, S. S. Notch regulates wingless expression and is not required for reception of the paracrine wingless signal during wing margin neurogenesis in Drosophila. Development 121, 2813– 2824 (1995).

    CAS  PubMed  Google Scholar 

  10. Diaz-Benjumea, F. J. & Cohen, S. M. Serrate signals through Notch to establish a Wingless-dependent organizer at the dorsal/ventral compartment boundary of the Drosophila wing. Development 121, 4215–4225 ( 1995).

    CAS  PubMed  Google Scholar 

  11. Kim, J., Irvine, K. D. & Carroll, S. B. Cell recognition, signal induction and symmetrical gene activation at the dorsal/ventral boundary of the developing Drosophila wing. Cell 82, 795– 802 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Doherty, D., Fenger, G., Younger-Shepherd, S., Jan, L. -Y. & Jan, Y.-N. Dorsal and ventral cells respond differently to the Notch ligands Delta and Serrate during Drosophila wing development. Genes Dev. 10, 421–434 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. de Celis, J. F., Garcia-Bellido, A. & Bray, S. J. Activation and function of Notch at the dorsal-ventral boundary of the wing imaginal disc. Development 122 , 359–369 (1996).

    CAS  PubMed  Google Scholar 

  14. Irvine, K. & Wieschaus, E. fringe, a boundary specific signalling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell 79, 595–606 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Wu, J. Y., Wen, L., Zhang, W. J. & Rao, Y. The secreted product of Xenopus gene lunatic Fringe, a vertebrate signaling molecule. Science 273, 355–358 ( 1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yuan, Y. P., Schultz, J., Mlodzik, M. & Bork, P. Secreted fringe-like signaling molecules may be glycosyltransferases. Cell 88, 9–11 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Amado, M., Almeida, R., Schwientek, T. & Clausen, H. Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions. Biochim. Biophys. Acta 1473, 35–53 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  18. Röttger, S. et al. Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus. J. Cell Sci. 111, 45– 60 (1998).

    PubMed  Google Scholar 

  19. Nilsson, T. & Warren, G. Retention and retrieval in the endoplasmic reticulum and the Golgi apparatus. Curr. Opin. Cell Biol. 6, 517–521 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Breton, C. & Imberty, A. Structure/function studies of glycosyltransferases. Curr. Opin. Struct. Biol. 9, 563– 571 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Gastinel, L. N., Cambillau, C. & Bourne, Y. Crystal structures of the bovine β4galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose. EMBO J. 18, 3546–3557 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harris, R. J. & Spellman, M. W. O-linked fucose and other post-translational modifications unique to EGF modules. Glycobiology 3 , 219–224 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Moloney, D. J. & Haltiwanger, R. S. The O-l fucose glycosylation pathway: identification and characterization of a uridine diphosphoglucose: fucose-β1,3-glucosyltransferase activity from Chinese hamster ovary cells. Glycobiology 9, 679–687 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Blaumueller, C. M., Qi, H., Zagouras, P. & Artavanis-Tsakonas, S. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90, 281–291 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Logeat, F. et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl Acad. Sci. USA 95, 8108–8112 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goode, S. & Perrimon, N. Brainiac and fringe are similar pioneer proteins that impart specificity to notch signaling during Drosophila development. Cold Spring Harb. Symp. Quant. Biol. 62, 177–184 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Bergemann, A. D., Cheng, H. J., Brambilla, R., Klein, R. & Flanagan, J. G. ELF-2, a new member of the Eph ligand family, is segmentally expressed in mouse embryos in the region of the hindbrain and newly forming somites. Mol. Cell. Biol. 15, 4921–4929 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Amado, M. et al. A family of human β3-galactosyltransferases. Characterization of four members of a UDP-galactose:β-N-acetyl-glucosamine/β- N acetyl-galactosamine β-1,3-galactosyltransferase family. J. Biol. Chem. 273, 12770–12778 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Brückner, K. et al. EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron 22, 511 –524 (1999).

    Article  PubMed  Google Scholar 

  30. Stanley, H., Botas, J. & Malhotra, V. The mechanism of Golgi segregation during mitosis is cell type-specific. Proc. Natl Acad. Sci. USA 94, 14467–14470 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Nilsson for information about Golgi retention sequences; V. Malhotra for antibody to Drosophila Golgi; M. Fortini for Notch and Delta expression plasmids; A.-M. Voie for transgenic strains and F. Peverali for his contributions at an early stage of the work. K.B. thanks K. Prydz and D. Toomre for technical discussion; B. Keck and T. Schwientek for introduction to glycosyltransferase assays. H.C. is supported by the Danish Cancer Center and the Velux Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Cohen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brückner, K., Perez, L., Clausen, H. et al. Glycosyltransferase activity of Fringe modulates Notch–Delta interactions . Nature 406, 411–415 (2000). https://doi.org/10.1038/35019075

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35019075

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing