Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis

Abstract

During carcinogenesis of pancreatic islets in transgenic mice, an angiogenic switch activates the quiescent vasculature. Paradoxically, vascular endothelial growth factor (VEGF) and its receptors are expressed constitutively. Nevertheless, a synthetic inhibitor (SU5416) of VEGF signalling impairs angiogenic switching and tumour growth. Two metalloproteinases, MMP-2/gelatinase-A and MMP-9/gelatinase-B, are upregulated in angiogenic lesions. MMP-9 can render normal islets angiogenic, releasing VEGF. MMP inhibitors reduce angiogenic switching, and tumour number and growth, as does genetic ablation of MMP-9. Absence of MMP-2 does not impair induction of angiogenesis, but retards tumour growth, whereas lack of urokinase has no effect. Our results show that MMP-9 is a component of the angiogenic switch.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of VEGF activity during carcinogenesis in islet cells.
Figure 2: Changes in VEGF localization and its involvement in angiogenesis.
Figure 3: Zymography profiles of extracellular proteinase activity during tumorigenesis.
Figure 4: MMP-9 can activate angiogenesis and release VEGF from normal islets.
Figure 5: Localization of MMP-9 in angiogenic stages.
Figure 6: Comparative genetic and pharmacogenetic analyses of the angiogenic switch and tumour growth.
Figure 7: Characterization of protease-deficient angiogenic islets and tumours.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  2. Folkman, J. Tumour angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  Google Scholar 

  3. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumourigenesis. Cell 86, 353–364 (1996).

    Article  CAS  Google Scholar 

  4. Bouck, N., Stellmach, V. & Hsu, S. C. How tumours become angiogenic. Adv. Cancer Res. 69, 135–174 (1996).

    Article  CAS  Google Scholar 

  5. Hanahan, D. Heritable formation of pancreatic β-cell tumours in transgenic mice harboring recombinant insulin/simian virus 40 oncogenes. Nature 315, 115–122 (1985).

    Article  CAS  Google Scholar 

  6. Folkman, J., Watson, K., Ingber, D. & Hanahan, D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339, 58–61 (1989).

    Article  CAS  Google Scholar 

  7. Dvorak, H. F., Nagy, J. A., Feng, D., Brown, L. F. & Dvorak, A. M. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr. Top. Microbiol. Immunol. 237, 97–132 (1999).

    CAS  PubMed  Google Scholar 

  8. Kerbel, R. S., Viloria-Petit, A., Okada, F. & Rak, J. Establishing a link between oncogenes and tumour angiogenesis. Mol. Med. 4, 286–295 (1998).

    Article  CAS  Google Scholar 

  9. Faller, D. V. Endothelial cell responses to hypoxic stress. Clin. Exp. Pharmacol. Physiol. 26, 74–84 (1999).

    Article  CAS  Google Scholar 

  10. Hanahan, D., Christofori, G., Naik, P. & Arbeit, J. Transgenic mouse models of tumour angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur. J. Cancer 32A, 2386–2393 (1996).

    Article  CAS  Google Scholar 

  11. Christofori, G., Naik, P. & Hanahan, D. Vascular endothelial growth factor and its receptors, flt-1 and flk-1, are expressed in normal pancreatic islets and throughout islet cell tumourigenesis. Mol. Endocrinol. 9, 1760–1770 (1995).

    CAS  PubMed  Google Scholar 

  12. Roberts W. G. & Palade, G. E. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res. 57, 765–72 (1997).

    CAS  PubMed  Google Scholar 

  13. Vajkoczy, P. et al. Inhibition of tumour growth, angiogenesis, and microcirculation by the novel flk-1 inhibitor SU5416 as assessed by intravital multi-fluorescence videomicroscopy. Neoplasia 1, 31–41 (1999).

    Article  CAS  Google Scholar 

  14. Brekken, R. A., Huang, X., King, S. W. & Thorpe, P. E. Vascular endothelial growth factor as a marker of tumour endothelium. Cancer Res. 58, 1952–1959 (1998).

    CAS  PubMed  Google Scholar 

  15. Cheng, S. Y., Nagane, M., Huang, H. S. & Cavenee, W. K. Intracerebral tumour-associated hemorrhage caused by overexpression of the vascular endothelial growth factor isoforms VEGF121 and VEGF165 but not VEGF189. Proc. Natl Acad. Sci. USA 94, 12081–12087 (1997).

    Article  CAS  Google Scholar 

  16. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    Article  CAS  Google Scholar 

  17. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  CAS  Google Scholar 

  18. O'Reilly, M. S., Widerschain, D., Stetler-Stevenson, W. G., Folkman, J. & Moses, M. A. Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J. Biol. Chem. 274, 29568–29571 (1999).

    Article  CAS  Google Scholar 

  19. Talbot, D. C. & Brown, P. D. Experimental and clinical studies on the use of matrix metalloprotease inhibitors for the treatment of cancer. Eur. J. Cancer 32A, 2528–2533. (1996).

    Article  CAS  Google Scholar 

  20. Brown, P. D. Clinical studies with matrix metalloprotease inhibitors. Acta Pathologica Microbiologica et Immunologica Sacndinavica 107, 174–80 (1999).

    Article  CAS  Google Scholar 

  21. Tamaki, K. et al. Synthesis and structure–activity relationships of gelatinase inhibitors derived from matlystatins. Chem. Pharmaceut. Bull. 43, 1883–1893 (1995).

    Article  CAS  Google Scholar 

  22. Bergers, G., Javaherian, K., Lo, K-M., Folkman, J. & Hanahan, D. Differential effects of angiogenesis inhibitors on distinct stages of carcinogenesis. Science 284, 808–812 (1999).

    Article  CAS  Google Scholar 

  23. Vu, T.H. et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93, 411–422 (1998).

    Article  CAS  Google Scholar 

  24. Itoh, T. et al. Unaltered secretion of beta-amyloid precursor protein in gelatinase A (matrix metalloprotease 2)-deficient mice. J. Biol. Chem. 272, 22389–22392 (1997).

    Article  CAS  Google Scholar 

  25. Itoh, T. et al. Reduced angiogenesis and tumour progression in gelatinase A-deficient mice. Cancer Res. 58, 1048–1051 (1998).

    CAS  PubMed  Google Scholar 

  26. Carmeliet, P. et al. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nature Gen. 17, 439–444 (1997).

    Article  CAS  Google Scholar 

  27. Vlodavsky, I. et al. Extracellular matrix-resident growth factors and enzymes: possible involvement in tumour metastasis and angiogenesis. Cancer Metastasis Rev., 9, 203–226 (1990).

    Article  CAS  Google Scholar 

  28. Hulett, M. D. et al. Cloning of mammalian heparanase, an important enzyme in tumour invasion and metastasis. Nature Med. 7, 803–809 (1999).

    Article  Google Scholar 

  29. Vlodavsky, I. et al. Mammalian heparanase: gene cloning, expression and function in tumour progression and metastasis. Nature Med. 7, 793–802 (1999).

    Article  Google Scholar 

  30. Coussens, L. M. et al. Inflammatory mast cells upregulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 13, 1382–1397 (1999).

    Article  CAS  Google Scholar 

  31. Gerber, H-P. et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nature Med. 5, 623–628 (1999).

    Article  CAS  Google Scholar 

  32. Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell (in the press).

  33. Zucker, S. et al. Measurement of matrix metalloprotease and tissue inhibitors of metalloproteinases in blood and tissues. Clinical and experimental applications. Ann. NY Acad. Sci. 878, 212–227 (1999).

    Article  CAS  Google Scholar 

  34. Fang, J. et al. Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumour model. Proc. Natl Acad. Sci. USA 97, 3884–3889 (2000).

    Article  CAS  Google Scholar 

  35. Zhou, Z. et al. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc. Natl Acad. Sci. USA 97, 4052–4057 (2000).

    Article  CAS  Google Scholar 

  36. Yu, Q. & Stamenkovic, I. Cell surface-localized metalloproteinase-9 proteolyically activates TGF-beta and promotes tumour invasion and angiogenesis. Genes Dev. 14, 163–176 (2000).

    PubMed  PubMed Central  Google Scholar 

  37. Perl, A. K. et al. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392, 190–193 (1998).

    Article  CAS  Google Scholar 

  38. Behrendtsen, O., Alexander, C. M. & Werb, Z. Metalloproteinases mediate extracellular matrix degradation by cells from mouse blastocyst outgrowths. Development 114, 447–456 (1992).

    CAS  PubMed  Google Scholar 

  39. Naik, P., Karrim, J. & Hanahan, D. The rise and fall of apoptosis during multistage tumourigenesis: downmodulation contributes to progression from angiogenic progenitors. Genes Dev. 10, 2105–2116 (1996).

    Article  CAS  Google Scholar 

  40. Herron, G. S., Werb, Z., Dwyer, K. & Banda, M. J. Secretion of metalloproteinases by stimulated capillary endothelial cells. I. Production of procollagenases and prostromelysin exceeds expression of proteolytic activity. J. Biol. Chem. 261, 2810–2813 (1986).

    CAS  PubMed  Google Scholar 

  41. Herron, G. S., Banda, M. J., Clark, E. J., Gavrilovic, J. & Werb, Z. Secretion of metalloproteinases by stimulated capillary endothelial cells. II. Expression of collagenase and stromelysin activities is regulated by endogenous inhibitors. J. Biol. Chem. 261, 2814–2818 (1986).

    CAS  PubMed  Google Scholar 

  42. Talhouk, R. S., Chin, J. R., Unemori, E. N., Werb, Z. & Bissell, M. J. Proteinases of the mammary gland: developmental regulation in vivo and vectorial secretion in culture. Development 112, 439–449 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Parangi, S., Dietrich, W., Christofori, G., Lander, E. S. & Hanahan, D. Tumour suppressor loci on mouse chromosomes 9 and 16 are lost at distinct stages of tumourigenesis in a transgenic model of islet cell carcinoma. Cancer Res. 55, 6071–6076 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank British Biotech Pharmaceuticals, Oxford, UK, for BB-94. We also thank E. Soliven, C. Skinner and O. Behrendtsen for excellent technical assistance, A. McMillan for help with statistical analysis, W. Ruth and T. Schoop of Biomed Arts for help with figures, D. Daniel and L. Coussens for valuable discussions, and B. Bowes and J. Folkman for support and encouragement. This work was funded by grants from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Hanahan.

Additional information

Correspondence and requests for materials should be addressed to D. H.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergers, G., Brekken, R., McMahon, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2, 737–744 (2000). https://doi.org/10.1038/35036374

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35036374

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing