Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

The meteoric rise of regulated intracellular proteolysis

Abstract

It is often the case in biology that research into breaking things down lags behind research into synthesizing them, and this is certainly true for intracellular proteolysis. Now that we recognize that intracellular proteolysis, triggered by attaching multiple copies of a small protein called ubiquitin to target proteins, is fundamental to life, it is hard to believe that 20 years ago this field was little more than a backwater of biochemistry studied by a handful of laboratories. Among the few were Avram Hershko, Aaron Ciechanover and Alexander Varshavsky, who were recently awarded the Albert Lasker award for basic medical research for discovering the importance of protein degradation in cellular physiology. This Timeline traces how they and their collaborators triggered the rapid movement of ubiquitin-mediated proteolysis to centre stage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The main proteolytic pathways in eukaryotic cells.
Figure 2: Lewis Carroll's Red Queen.
Figure 3: The fathers of the field of regulated intracellular proteolysis.

References

  1. Carroll, L. Alice's Adventures in Wonderland. Through the looking glass (Penguin Books, London, 1973).

    Google Scholar 

  2. Schoenheimer, R. The Dynamic State of Body Constituents (Harvard Univ. Press, Boston, 1942).

    Google Scholar 

  3. Blobel, G. in Ciba Foundation Symposium Vol. 75, 398 (Excerpta Medica, Amsterdam, 1980).

    Google Scholar 

  4. Wilkinson, K. D., Urban, M. K. & Haas, A. L. Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. J. Biol. Chem. 255, 7529–7532 (1980).

    CAS  Google Scholar 

  5. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–480 (1998).

    Article  CAS  Google Scholar 

  6. Hershko, A., Eytan, E., Ciechanover, A. & Haas, A. L. Immunochemical analysis of the turnover of ubiquitin–protein conjugates in intact cells. Relationship to the breakdown of abnormal proteins. J. Biol. Chem. 257, 13964–13970 (1982).

    CAS  Google Scholar 

  7. Pickart, C. M. & Rose, I. A. Functional heterogeneity of ubiquitin carrier proteins. J. Biol. Chem. 260, 1573 –1581 (1985).

    CAS  Google Scholar 

  8. Huibregtse, J., Scheffner, M. & Howley, P. M. Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol. Cell. Biol. 13, 775– 784 (1993).

    Article  CAS  Google Scholar 

  9. Finley, D., Ciechanover, A. & Varshavsky, A. Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37, 43–55 (1984).

    Article  CAS  Google Scholar 

  10. Ciechanover, A., Finley, D. & Varshavsky, A. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37, 57–66 (1984).

    Article  CAS  Google Scholar 

  11. Zachariae, W. & Nasmyth, K. Whose end is destruction: cell division and the anaphase promoting complex. Genes Dev. 13, 2039–2058 (1999).

    Article  CAS  Google Scholar 

  12. Jentsch, S., McGrath, J. & Varshavsky, A. The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329, 131– 134 (1987).

    Article  CAS  Google Scholar 

  13. Goebl, M. G. et al. The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science 241, 1331– 1335 (1988).

    Article  CAS  Google Scholar 

  14. Glotzer, M., Murray, A. W. & Kirschner, M. W. Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138 ( 1991).

    Article  CAS  Google Scholar 

  15. Hershko, A., Leshinsky, E., Ganoth, D. & Heller, H. ATP-dependent degradation of ubiquitin–protein conjugates. Proc. Natl Acad. Sci. USA 81, 1619– 1623 (1984).

    Article  CAS  Google Scholar 

  16. Hough, R., Pratt, G. & Rechsteiner, M. Ubiquitin–lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates. J. Biol. Chem. 261, 2400– 2408 (1986).

    CAS  Google Scholar 

  17. Hough, R., Pratt, G. & Rechsteiner, M. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J. Biol. Chem. 262 , 8303–8313 (1987).

    CAS  Google Scholar 

  18. Hough, R., Pratt, G. & Rechsteiner, M. in Ubiquitin (ed. Rechsteiner, M.) 101– 134 (Plenum Press, New York, 1988).

    Book  Google Scholar 

  19. Ganoth, D., Leshinsky, E., Eytan, E. & Hershko, A. A multicomponent system that degrades proteins conjugated to ubiquitin. Resolution of factors and evidence for ATP-dependent complex formation. J. Biol. Chem. 263, 12412–12419 ( 1988).

    CAS  Google Scholar 

  20. Eytan, E., Ganoth, D., Armon, T. & Hershko, A. ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin. Proc. Natl Acad. Sci. USA 86, 7751–7755 (1989).

    Article  CAS  Google Scholar 

  21. Armon, T., Ganoth, D. & Hershko, A. Assembly of the 26S complex that degrades proteins ligated to ubiquitin is accompanied by the formation of ATPase activity. J. Biol. Chem. 265, 20723–20726 (1990).

    CAS  Google Scholar 

  22. Arrigo, A.-P., Tanaka, K., Goldberg, A. L. & Welch, W. J. Identity of the 19S 'prosome' particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature 331, 192–194 (1988).

    Article  CAS  Google Scholar 

  23. Falkenburg, P. E. et al. Drosophila small cytoplasmic 19S ribonucleoprotein is homologous to the rat multicatalytic proteinase. Nature 331, 190–192 (1988).

    Article  CAS  Google Scholar 

  24. Dubiel, W. & Rechsteiner, M. The 19S regulatory complex of the 26S proteasome. Adv. Mol. Cell Biol. 27, 129–163 (1998).

    Article  CAS  Google Scholar 

  25. Gordon, C., McGurk, G., Dillon, P., Rosen, C. & Hastie, N. Defective mitosis due to a mutation in the gene for a fission yeast 26S protease subunit. Nature 366, 355–357 (1993).

    Article  CAS  Google Scholar 

  26. Ghislain, M., Udvardy, A. & Mann, C. S. cerevisiae 26S protease mutants arrest cell division in G2/metaphase. Nature 366, 358 –361 (1993).

    Article  CAS  Google Scholar 

  27. Glickman, M. H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin conjugate degradation and related to the COP-9-signalasome and eIF3. Cell 94, 615–623 (1998).

    Article  CAS  Google Scholar 

  28. Braun, B. C. et al. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nature Cell Biol. 1, 221– 226 (1999).

    Article  CAS  Google Scholar 

  29. Lowe, J. et al. Crystal structure of the 20S proteasome from the archeon T. acidophilum at 3.4 Å resolution. Science 268, 533–539 (1995).

    Article  CAS  Google Scholar 

  30. Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution . Nature 386, 463–471 (1997).

    Article  CAS  Google Scholar 

  31. Lowe, J., Mayer, R. J. & Landon, M. Ubiquitin in neurodegenerative diseases. Brain Pathol. 3, 55–65 ( 1993).

    Article  CAS  Google Scholar 

  32. McKeith, I. G. et al. Clinical and pathological diagnosis of dementia with Lewy bodies (DLB). Report of the CDLB international workshop. Neurology 47, 1113–1124 ( 1996).

    Article  CAS  Google Scholar 

  33. Doherty, F. J. et al. Ubiquitin–protein conjugates accumulate in the lysosomal system of fibroblasts treated with cysteine protease inhibitors. Biochem. J. 263, 47–55 ( 1989).

    Article  CAS  Google Scholar 

  34. Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 ( 1998).

    Article  CAS  Google Scholar 

  35. Hicke, L. Gettin' down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol. 9, 107– 112 (1999).

    Article  CAS  Google Scholar 

  36. Joazeiro, C. A. P. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type E2-dependent ubiquitin protein ligase. Science 286, 309–312 (1999).

    Article  CAS  Google Scholar 

  37. Jiang, J. & Struhl, G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391, 493–496 ( 1998).

    Article  CAS  Google Scholar 

  38. Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitin–proteasome pathway is required for processing the NFκB1 precursor protein and the activation of NFκB. Cell 78, 773–785 (1994).

    Article  CAS  Google Scholar 

  39. Huibregtse, J., King, R. W., Deshaies, R. J., Peters, J.-M. & Kirschner, M. W. How proteolysis drives the cell cycle. Science 274, 1652– 1659 (1996).

    Article  Google Scholar 

  40. Groettrup, M., Soza, A., Kuckelkorn, U. & Kloetzel, P. M. Peptide antigen production by the proteasome: complexity provides efficiency. Immunol. Today 17, 429–435 (1996).

    Article  CAS  Google Scholar 

  41. Gaczynska, M., Rock, K. L. & Goldberg, A. L. Interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365, 264 –267 (1993).

    Article  CAS  Google Scholar 

  42. Dick, T. P. et al. Coordinated dual cleavages induced by the proteasome regulator PA 28 lead to dominant MHC ligands. Cell 86, 253–256 (1996).

    Article  CAS  Google Scholar 

  43. Hiller, M. M., Finger, A., Schweiger, M. & Wolf, D. H. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin–proteasome pathway. Science 273, 1725– 1728 (1996).

    Article  CAS  Google Scholar 

  44. Plemper, R. K. & Wolf, D. H. Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem. Sci. 24, 266–270 (1999).

    Article  CAS  Google Scholar 

  45. Lisztwan, J., Imbert, G., Wirbelauer, C., Gstaiger, M. & Krek, W. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin–protein ligase activity. Genes Dev. 13, 1822–1833 (1999).

    Article  CAS  Google Scholar 

  46. Higashitsuji, H. et al. Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nature Med. 6, 96–99 ( 2000).

    Article  CAS  Google Scholar 

  47. Kishino, T., Lalande, M. & Wagstaf, J. UBE3A/E6-AP mutations cause Angelman's syndrome. Nature Genet. 15, 70–73 (1997).

    Article  CAS  Google Scholar 

  48. Ferrell, K., Wilkinson, R. M., Dubiel, W. & Gordon, C. Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem. Sci. 25, 83–88 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank Avram Hershko and Aaron Ciechanover (Haifa), Alex Varshavsky (Pasadena), Wolfgang Dubiel (Berlin), Dieter Wolf (Stuttgart), Mark Hochstrasser (Chicago), Peter Zwickl (Martinsreid), Cecile Pickart (Baltimore), Keith Wilkinson (Atlanta), Alan Weissman (Washington), Ron Hay (St Andrews), and Simon Dawson, Michael Landon, Andy Alban and Rob Layfield (Nottingham) for help with this article; Rohan Baker (Canberra) for critically reviewing the manuscript; and the MRC, BBSRC, Wellcome Trust and EU Framework IV for support of some of the quoted work. Numerous pivotal contributions have been omitted due to space constraints; many thanks to the 'unsung heroes'.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Regulatory subunits of the 26S proteasome

Ubiquitin index

The Ciechanover laboratory

The Hershko laboratory

The Varshavsky laboratory

Press Release on the 2000 Albert Lasker Awards

Nature Medicine commentaries

ENCYCLOPEDIA OF LIFE SCIENCES

Ubiquitin pathway

Protease complexes

Rights and permissions

Reprints and permissions

About this article

Cite this article

John Mayer, R. The meteoric rise of regulated intracellular proteolysis . Nat Rev Mol Cell Biol 1, 145–148 (2000). https://doi.org/10.1038/35040090

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35040090

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing