Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain

Abstract

The inhibitor-of-apoptosis proteins (IAPs)1 regulate programmed cell death by inhibiting members of the caspase family of enzymes2,3,4,5. Recently, a mammalian protein called Smac6 (also named DIABLO7) was identified that binds to the IAPs and promotes caspase activation. Although undefined in the X-ray structure, the amino-terminal residues of Smac are critical for its function8,9. To understand the structural basis for molecular recognition between Smac and the IAPs, we determined the solution structure of the BIR3 domain of X-linked IAP (XIAP) complexed with a functionally active nine-residue peptide derived from the N terminus of Smac. The peptide binds across the third β-strand of the BIR3 domain in an extended conformation with only the first four residues contacting the protein. The complex is stabilized by four intermolecular hydrogen bonds, an electrostatic interaction involving the N terminus of the peptide, and several hydrophobic interactions. This structural information, along with the binding data from BIR3 and Smac peptide mutants reported here, should aid in the design of small molecules that may be used for the treatment of cancers that overexpress IAPs10,11,12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Similarity of IAP BIR domains and N-terminal sequences of IAP binding proteins.
Figure 2: Structure of the XIAP BIR3 domain/Smac peptide complex.

Similar content being viewed by others

References

  1. Crook, N. E., Clem, R. J. & Miller, L. K. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J. Virol. 67, 2168–2174 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hawkins, C. J., Uren, A. G., Häcker, G., Medcalf, R. L. & Vaux, D. L. Inhibition of interleukin 1β-converting enzyme-mediated apoptosis of mammalian cells by baculovirus IAP. Proc. Natl Acad. Sci. USA 93, 13786–13790 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deveraux, Q. L., Takahashi, R., Salvesen, G. S. & Reed, J. C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300–304 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Roy, N., Deveraux, Q. L., Takahashi, R., Salvesen, G. S. & Reed, J. C. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J. 16, 6914–6925 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deveraux, Q. L. et al. Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J. 18, 5242–5251 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Srinivasula, S. M. et al. Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. J. Biol. Chem. 275, 36152–36157 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Chai, J. et al. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406, 855–862 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Tamm, I. et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin. Cancer Res. 6, 1796–1803 (2000).

    CAS  PubMed  Google Scholar 

  11. Ambrosini, G., Adida, C. & Altieri, D. C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Med. 3, 917–217 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. LaCasse, E. C., Baird, S., Korneluk, R. G. & MacKenzie, A. E. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17, 3247–3259 (1998).

    Article  PubMed  Google Scholar 

  13. Sun, C. et al. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 401, 818–822 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Sun, C. et al. NMR structure and mutagenesis of the third BIR domain of the inhibitor of apoptosis protein XIAP. J. Biol. Chem. 275, 33777–33781 (1998).

    Article  Google Scholar 

  15. Verdecia, M. A. et al. Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nature Struct. Biol. 7, 602–608 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Muchmore, S. W. et al. Crystal structure and mutagenic analysis of the inhibitor-of-apoptosis protein survivin. Mol. Cell 6, 173–182 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Chantalat, L. et al. Crystal structure of human survivin reveals a bow-tie-shaped dimer with two unusual α-helical extensions. Mol. Cell 6, 183–189 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Kleywegt, G. J. & Jones, T. A. in From First Map to Final Model (eds Bailey, S., Hubbard, R. & Waller, D.) 59–66 (Daresbury Laboratory, Daresbury, UK, 1994).

    Google Scholar 

  19. Vucic, D., Kaiser, W. J. & Miller, L. K. Inhibitor of apoptosis proteins physically interact with and block apoptosis induced by Drosophila proteins Hid and Grim. Mol. Cell Biol. 18, 3300–3309 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cutforth, T. & Gaul, U. A methionine aminopeptidase and putative regulator of translation initiation is required for cell growth and patterning in Drosophila. Mech. Dev. 82, 23–28 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Clore, G. M. & Gronenborn, A. M. Multidimensional heteronuclear magnetic resonance of proteins. Methods Enzymol. 239, 349–363 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Stein E. G., Rice, L. M. & Brünger, A. T. Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J. Magn. Reson. B 124, 154–164 (1997).

    Article  ADS  Google Scholar 

  24. Nilges, M., Gronenborn, A. M., Brünger, A. T. & Clore, G. M. Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. Protein Eng. 2, 27–38 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Nilges, M., Macias, M. J., O'Donoghue, S. I. & Oschkinat, H. Automated NOESY interpretation with ambiguous distance restraints: The refined NMR solution structure of the pleckstrin homology domain from β-spectrin. J. Mol. Biol. 269, 408–422 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Laskowski, R. A., Rullmann, J. A., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Carson, M. J. Ribbon models of macromolecules. J. Mol. Graphics 5, 103–106 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Barrett and P. Richardson for help in the synthesis of some of the peptides, L. Miesbauer for the mass spectrometry data, and J. Noel and co-workers for the coordinates of human survivin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. Fesik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Sun, C., Olejniczak, E. et al. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408, 1004–1008 (2000). https://doi.org/10.1038/35050006

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35050006

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing